- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 求椭圆中的弦长
- + 椭圆中三角形(四边形)的面积
- 椭圆中的通径问题
- 椭圆的焦半径与焦点弦问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在平面直角坐标系
中,已知椭圆
的右焦点为
,左、右顶点分别为
、
,上、下顶点分别为
、
,连结
并延长交椭圆于点
,连结
,
,记椭圆
的离心率为
.

(1)若
,
.
①求椭圆
的标准方程;
②求
和
的面积之比.
(2)若直线
和直线
的斜率之积为
,求
的值.














(1)若


①求椭圆

②求


(2)若直线




已知
是椭圆
的两个焦点,
为坐标原点,离心率为
,点
在椭圆上.
(1)求椭圆的标准方程;
(2)
为椭圆上三个动点,
在第二象限,
关于原点对称,且
,判断
是否存在最小值,若存在,求出该最小值,并求出此时点
的坐标,若不存在,说明理由.





(1)求椭圆的标准方程;
(2)






已知椭圆
的离心率为
,并且短轴长为2,椭圆的左、右顶点分别为
.
(1)求椭圆的标准方程;
(2)设点
,连接
交椭圆于点
,若
,求四边形
的面积.



(1)求椭圆的标准方程;
(2)设点





已知椭圆
(
)的左右焦点分别为
,
为椭圆
上位于
轴同侧的两点,
的周长为
,
的最大值为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若
,求四边形
面积的取值范围.










(Ⅰ)求椭圆

(Ⅱ)若


已知椭圆
:
的焦点分别为
,
,椭圆
的离心率为
,且经过点
,经过
,
作平行直线
,
,交椭圆
于两点
,
和两点
,
.
(1)求
的方程;
(2)求四边形
面积的最大值.
















(1)求

(2)求四边形
