刷题首页
题库
高中数学
题干
已知椭圆
(
)的左右焦点分别为
,
为椭圆
上位于
轴同侧的两点,
的周长为
,
的最大值为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若
,求四边形
面积的取值范围.
上一题
下一题
0.99难度 解答题 更新时间:2019-11-28 10:10:19
答案(点此获取答案解析)
同类题1
如图,在直角坐标系
中有一直角梯形
,
的中点为
,
,
,
,
,以
,
为焦点的椭圆经过点
.求椭圆的标准方程。
同类题2
(1)已知椭圆中心在原点,一个焦点为
,且长轴长是短轴长的2倍,求该椭圆的标准方程;
(2)已知双曲线焦点在
y
轴上,焦距为10,双曲线的渐近线方程为
,求双曲线的方程.
同类题3
椭圆
(
)的离心率为
,其左焦点到点
的距离为
.
(1)求椭圆
的标准方程;
(2)若直线
与椭圆
相交于
、
两点(
、
不是左右顶点),且以
为直径的圆过椭圆
的右顶点,求证:直线
过定点,并求出该定点的坐标.
同类题4
已知椭圆
(
)的焦距为
,且过点
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若点
,设
为椭圆
上位于第三象限内一动点,直线
与
轴交于点
,直线
与
轴交于点
,求证:四边形
的面积为定值,并求出该定值.
同类题5
(本小题满分13分)已知抛物线
的焦点为
,过点F作直线l交抛物线C于A,B两点.椭圆E的中心在原点,焦点在x轴上,点F是它的一个顶点,且其离心率
.
(Ⅰ)分别求抛物线C和椭圆E的方程;
(Ⅱ)经过A,B两点分别作抛物线C的切线
,切线
相交于点M.证明
;
(Ⅲ)椭圆E上是否存在一点
,经过点
作抛物线C的两条切线
(
为切点),使得直线
过点F?若存在,求出抛物线C与切线
所围成图形的面积;若不存在,试说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中三角形(四边形)的面积