刷题首页
题库
高中数学
题干
已知椭圆
:
的焦点分别为
,
,椭圆
的离心率为
,且经过点
,经过
,
作平行直线
,
,交椭圆
于两点
,
和两点
,
.
(1)求
的方程;
(2)求四边形
面积的最大值.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-01 08:09:37
答案(点此获取答案解析)
同类题1
椭圆
的一个焦点
F
与抛物线
y
2
=4
x
的焦点重合,且截抛物线的准线所得弦长为
,倾斜角为45°的直线
l
过点
F
.
(Ⅰ)求该椭圆的方程;
(Ⅱ)设椭圆的另一个焦点为
F
1
,问抛物线
y
2
=4
x
上是否存在一点
M
,使得
M
与
F
1
关于直线
l
对称,若存在,求出点
M
的坐标,若不存在,说明理由.
同类题2
已知椭圆
的左、右焦点分别为
,离心率
,点
是椭圆上的一个动点,
面积的最大值是
.
(1)求椭圆的方程;
(2)已知点
,问是否存在直线
与椭圆
交于
两点,且
,若存在,求出直线
斜率的取值范围;若不存在,说明理由.
同类题3
如图,在平面直角坐标系
中,已知椭圆
的离心率为
,且右焦点到右准线
的距离为1.过
轴上一点
为常数,且
的直线与椭圆
交于
两点,与
交于点
,
是弦
的中点,直线
与
交于点
.
(1)求椭圆
的标准方程;
(2)试判断以
为直径的圆是否经过定点?若是,求出定点坐标;若不是,请说明理由.
同类题4
已知椭圆
的长轴长为
,焦距为2,抛物线
的准线经过椭圆
的左焦点
.
(1)求椭圆
与抛物线
的方程;
(2)直线
经过椭圆
的上顶点且
与抛物线
交于
,
两点,直线
,
与抛物线
分别交于点
(异于点
),
(异于点
),证明:直线
的斜率为定值.
同类题5
已知椭圆
:
的离心率为
,且经过点
,
为椭圆
的左焦点.直线
:
与椭圆
交于
,
两点.
(1)求椭圆
的标准方程;
(2)求
的面积.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
求椭圆中的弦长