- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 求椭圆中的弦长
- + 椭圆中三角形(四边形)的面积
- 椭圆中的通径问题
- 椭圆的焦半径与焦点弦问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知两点
、
,动点
满足
,记
的轨迹为曲线
,直线
(
)交曲线
于
、
两点,点
在第一象限,
轴,垂足为
,连结
并延长交曲线
于点
.
(1)求曲线
的方程,并说明曲线
是什么曲线;
(2)若
,求△
的面积;
(3)证明:△
为直角三角形.

















(1)求曲线


(2)若


(3)证明:△

已知直线
与抛物线
交于
,
两点,点
,
在抛物线
上,且直线
与
交于点
.

(1)写出抛物线
的焦点坐标和准线方程;
(2)记
,
的面积分别为
,
,若
,求实数
的值.











(1)写出抛物线

(2)记






已知椭圆
:
的离心率
,左、右焦点分别为
,
,过右焦点
任作一条直线
,记
与椭圆的两交点为
,
,已知
的周长为定值
.
(1)求椭圆
的方程;
(2)记点
关于
轴的对称点为
,直线
交
轴于点
,求
面积的取值范围.












(1)求椭圆

(2)记点







已知
,
是平面上的两个定点,动点
满足
.
(1)求动点
的轨迹方程;
(2)若直线
与(1)中的轨迹相交于不同的两点
,
为坐标原点,求
面积的最大值和此时直线
的方程.




(1)求动点

(2)若直线





已知点
,
(其中
)是曲线
上的两点,
,
两点在
轴上的射影分别为点
,
且
.
(1)当点
的坐标为
时,求直线
的方程;
(2)记
的面积为
,梯形
的面积为
,求
的范围.










(1)当点



(2)记





已知椭圆
:
的左、右顶点分别为
,
,圆
上有一动点
,
在
轴上方,点
,直线
交椭圆
于点
,连接
,
.

(1)若
,求
的面积
;
(2)设直线
,
的斜率存在且分别为
,
,若
,求
的取值范围.















(1)若



(2)设直线






平面直角坐标系
中,过椭圆
:
(
)焦点的直线
交
于
两点,
为
的中点,且
的斜率为9.
(Ⅰ)求
的方程;
(Ⅱ)
是
的左、右顶点,
是
上的两点,若
,求四边形
面积的最大值.










(Ⅰ)求

(Ⅱ)





