刷题宝
  • 刷题首页
题库 高中数学

题干

已知椭圆的两个焦点分别为,,离心率为,且过点.
()求椭圆的标准方程.
()、、、是椭圆上的四个不同的点,两条都不和轴垂直的直线和分别过点,,且这条直线互相垂直,求证:为定值.
上一题 下一题 0.99难度 解答题 更新时间:2017-12-27 05:54:49

答案(点此获取答案解析)

同类题1

与椭圆有相同离心率,且过点的椭圆的标准方程是(   )
A.B.
C.D.或

同类题2

已知椭圆上的左、右顶点分别为,,为左焦点,且,又椭圆过点.
(Ⅰ)求椭圆的方程;
(Ⅱ)点和分别在椭圆和圆上(点除外),设直线,的斜率分别为,,若,,三点共线,求的值.

同类题3

已知椭圆的离心率为,点在椭圆上.
(1)求椭圆的方程;
(2)设,过点作直线交椭圆于不同于的两点,直线的斜率分别为,试问:是否为定值?若是,求出定值,若不是,请说明理由.

同类题4

已知椭圆:的离心率为,右焦点为F,点在椭圆上.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的直线交椭圆于,两点,交直线于点,设,,求证:为定值.
相关知识点
  • 平面解析几何
  • 圆锥曲线
  • 椭圆
  • 椭圆的标准方程
  • 根据椭圆过的点求标准方程
  • 根据离心率求椭圆的标准方程
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)