刷题首页
题库
高中数学
题干
已知椭圆
的两个焦点分别为
,
,离心率为
,且过点
.
(
)求椭圆
的标准方程.
(
)
、
、
、
是椭圆
上的四个不同的点,两条都不和
轴垂直的直线
和
分别过点
,
,且这条直线互相垂直,求证:
为定值.
上一题
下一题
0.99难度 解答题 更新时间:2017-12-27 05:54:49
答案(点此获取答案解析)
同类题1
与椭圆
有相同离心率,且过点
的椭圆的标准方程是( )
A.
B.
C.
D.
或
同类题2
已知椭圆
上的左、右顶点分别为
,
,
为左焦点,且
,又椭圆
过点
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)点
和
分别在椭圆
和圆
上(点
除外),设直线
,
的斜率分别为
,
,若
,
,
三点共线,求
的值.
同类题3
已知椭圆
的离心率为
,点
在椭圆上.
(1)求椭圆
的方程;
(2)设
,过点
作直线
交椭圆
于不同于
的
两点,直线
的斜率分别为
,试问:
是否为定值?若是,求出定值,若不是,请说明理由.
同类题4
已知椭圆
:
的离心率为
,右焦点为
F
,点
在椭圆
上.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过点
的直线交椭圆
于
,
两点,交直线
于点
,设
,
,求证:
为定值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
根据离心率求椭圆的标准方程