刷题首页
题库
高中数学
题干
已知椭圆
的两个焦点分别为
,
,离心率为
,且过点
.
(
)求椭圆
的标准方程.
(
)
、
、
、
是椭圆
上的四个不同的点,两条都不和
轴垂直的直线
和
分别过点
,
,且这条直线互相垂直,求证:
为定值.
上一题
下一题
0.99难度 解答题 更新时间:2017-12-27 05:54:49
答案(点此获取答案解析)
同类题1
椭圆
经过点
,对称轴为坐标轴,且点
为其右焦点,求椭圆
的标准方程.
同类题2
已知椭圆
(
)的两个焦点
,
,点
在此椭圆上.
(1)求椭圆
的方程;
(2)过点
的直线
与椭圆
相交于
两点,设点
,记直线
的斜率分别为
,求证:
为定值.
同类题3
已知椭圆
的两个焦点坐标分别是
、
,并且经过点
.
(1)求椭圆
的方程;
(2)若直线
与圆
:
相切,并与椭圆
交于不同的两点
、
.当
,且满足
时,求
面积
的取值范围.
同类题4
设AB是椭圆Γ的长轴,点C在Γ上,且∠CBA=
,若AB=4,BC=
,则Γ的两个焦点之间的距离为
.
同类题5
已知椭圆
:
的离心率为
,且经过点
.
(1)求椭圆
的方程;
(2)直线
与椭圆
相交于
,
两点,若
,求
(
为坐标原点)面积的最大值及此时直线
的方程.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
根据离心率求椭圆的标准方程