- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 根据焦点或准线写出抛物线的标准方程
- 根据定义求抛物线的标准方程
- 根据抛物线上的点求标准方程
- 求抛物线的轨迹方程
- 求实际问题中的抛物线方程
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知中心在原点的椭圆
和抛物线
有相同的焦点
,椭圆
过点
,抛物线
的顶点为原点.

求椭圆
和抛物线
的方程;
设点P为抛物线
准线上的任意一点,过点P作抛物线
的两条切线PA,PB,其中A,B为切点.
设直线PA,PB的斜率分别为
,
,求证:
为定值;
若直线AB交椭圆
于C,D两点,
,
分别是
,
的面积,试问:
是否有最小值?若有,求出最小值;若没有,请说明理由.
























已知抛物线C的焦点在y轴上,焦点到准线的距离为2,且对称轴为y轴.
(1)求抛物线C的标准方程;
(2)当抛物线C的焦点为
时,过F作直线交抛物线于,A、B两点,若直线OA,OB(O为坐标原点)分别交直线
于M、N两点,求
的最小值.
(1)求抛物线C的标准方程;
(2)当抛物线C的焦点为



(1)已知椭圆的焦点在x轴上,长轴长为4,焦距为2,求该椭圆的标准方程;
(2)已知抛物线顶点在原点,对称轴是y轴,并且焦点到准线的距离为5,求该抛物线方程.
(2)已知抛物线顶点在原点,对称轴是y轴,并且焦点到准线的距离为5,求该抛物线方程.
如图,在平面直角坐标系xOy中,已知抛物线的焦点F在y轴上,其准线与双曲线
的下准线重合.

(1)求抛物线的标准方程;
(2)设A(
,
)(
>0)是抛物线上一点,且AF=
,B是抛物线的准线与y轴的交点.过点A作抛物线的切线l,过点B作l的平行线l′,直线l′与抛物线交于点M,N,求△AMN的面积.



(1)求抛物线的标准方程;
(2)设A(



