- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- 椭圆
- 双曲线
- + 抛物线
- 抛物线的定义
- 抛物线标准方程的形式
- 抛物线标准方程的求法
- 抛物线的顶点、开口方向
- 抛物线的范围
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线E:
的准线为
,焦点为
,
为坐标原点。
(1)求过点
、
,且与
相切的圆的方程;
(2)过
点的直线交抛物线E于
两点,点A关于x轴的对称点为
,且点
与点
不重合,求证:直线
过定点.




(1)求过点



(2)过







已知抛物线C:
,其焦点到准线的距离为2,直线l与抛物线C交于A,B两点,过A,B分别作抛物线C的切线
,
交于点M
(Ⅰ)求抛物线C的方程
(Ⅱ)若
,求三角形
面积的最小值



(Ⅰ)求抛物线C的方程
(Ⅱ)若

