- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 双曲线的定义
- 双曲线标准方程的形式
- + 双曲线标准方程的求法
- 根据a、b、c求双曲线的标准方程
- 根据双曲线过的点求标准方程
- 求双曲线的轨迹方程
- 双曲线的焦点、焦距
- 双曲线的范围
- 双曲线的对称性
- 等轴双曲线
- 双曲线的离心率
- 双曲线的应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(1)双曲线与椭圆
有相同焦点,且焦点到渐近线的距离等于
,求双曲线的标准方程;
(2)已知顶点在原点,焦点在
轴上的抛物线被直线
截得的弦长为
,求抛物线的标准方程.


(2)已知顶点在原点,焦点在



已知抛物线
,直线
倾斜角是
且过抛物线
的焦点,直线
被抛物线
截得的线段长是
,双曲线
的一个焦点在抛物线
的准线上,则直线
与
轴的交点
到双曲线
的一条渐近线的距离是()













A.![]() | B.![]() | C.![]() | D.![]() |
如图,直角坐标系
中,一直角三角形
,
,
在
轴上且关于原点
对称,
在边
上,
,
的周长为12.若一双曲线
以
为焦点,且经过
两点.

(1)求双曲线
的方程;
(2)若一过点
(
为非零常数)的直线
与双曲线
相交于不同于双曲线顶点的两点
、
,且
,问在
轴上是否存在定点
,使
?若存在,求出所有这样定点
的坐标;若不存在,请说明理由.














(1)求双曲线

(2)若一过点











如图所示的“8”字形曲线是由两个关于
轴对称的半圆和一个双曲线的一部分组成的图形,其中上半个圆所在圆方程是
,双曲线的左、右顶点
、
是该圆与
轴的交点,双曲线与半圆相交于与
轴平行的直径的两端点.

(1)试求双曲线的标准方程;
(2)记双曲线的左、右焦点为
、
,试在“8”字形曲线上求点
,使得
是直角.







(1)试求双曲线的标准方程;
(2)记双曲线的左、右焦点为




设A、B分别为双曲线
的左右顶点,双曲线的实轴长为
,焦点到渐近线的距离为
.
(1)求双曲线的方程;
(2)已知直线
与双曲线的右支交于M、N两点,且在双曲线的右支上存在点D,使
,求t的值及点D的坐标.



(1)求双曲线的方程;
(2)已知直线


已知双曲线
的中心为原点
,左、右焦点分别为
、
,离心率为
,点
是直线
上任意一点,点
在双曲线
上,且满足
.
(1)求实数
的值;
(2)证明:直线
与直线
的斜率之积是定值;
(3)若点
的纵坐标为
,过点
作动直线
与双曲线右支交于不同的两点
、
,在线段
上去异于点
、
的点
,满足
,证明点
恒在一条定直线上.










(1)求实数

(2)证明:直线


(3)若点












已知
,
,
(1)求点
的轨迹C的方程;
(2)若直线
与曲线C交于A、B两点,并且A、B在y轴的同一侧,求实数k的取值范围.
(3)设曲线C与x轴的交点为M,若直线
与曲线C交于A、B两点,是否存在实数k,使得以AB为直径的圆恰好过点M?若有,求出k的值;若没有,写出理由.



(1)求点

(2)若直线

(3)设曲线C与x轴的交点为M,若直线

已知双曲线
,点
在曲线
上,曲线
的离心率为
,点
为曲线
上易于点A的任意两点,
为坐标原点.
(1)求曲线
上方程;
(2)若
为曲线
的焦点,求
最大值;
(3)若以
为直径的圆过点
,求证:直线
过定点,并求出定点坐标.








(1)求曲线

(2)若



(3)若以



双曲线
的虚轴长为
,两条渐近线方程为
.
(1)求双曲线
的方程;
(2)双曲线
上有两个点
,直线
和
的斜率之积为
,判别
是否为定值,;
(3)经过点
的直线
且与双曲线
有两个交点
,直线
的倾斜角是
,是否存在直线
(其中
)使得
恒成立?(其中
分别是点
到
的距离)若存在,求出
的值,若不存在,请说明理由.



(1)求双曲线

(2)双曲线






(3)经过点













