- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- 椭圆
- + 双曲线
- 双曲线的定义
- 双曲线标准方程的形式
- 双曲线标准方程的求法
- 双曲线的焦点、焦距
- 双曲线的范围
- 双曲线的对称性
- 等轴双曲线
- 双曲线的离心率
- 双曲线的应用
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
《九章算术》是我国古代内容极为丰富的数学名著,第九章“勾股”,讲述了“勾股定理”及一些应用,还提出了一元二次方程的解法问题.直角三角形的三条边长分别称“勾”“股”“弦”,设
、
分别是双曲线
的左、右焦点,
是该双曲线右支上的一点,若
、
分别是
的“勾”、“股”,且
,则双曲线的离心率为( )








A.![]() | B.![]() | C.2 | D.![]() |
已知双曲线
的左、右两个焦点分别为
,以线段
为直径的圆与双曲线的渐近线在第一象限的交点为
,若
,该双曲线的离心率为
,则
( )







A.2 | B.![]() | C.![]() | D.![]() |
已知双曲线
的右焦点到渐近线的距离为3.现有如下条件:①双曲线
的离心率为
; ②双曲线
与椭圆
共焦点; ③双曲线右支上的一点
到
的距离之差是虚轴长的
倍.
请从上述3个条件中任选一个,得到双曲线
的方程为_____________.








请从上述3个条件中任选一个,得到双曲线

已知点
是曲线
上任意-点,以坐标原点为极点,
轴的正半铀为极轴建立极坐标系.曲线
的极坐标方程为
,菱形
的顶点都在圆
上,且
按逆时针次序接列,点
的极坐标为
(1)求曲线
的直角坐标方程,并写出
的直角坐标;
(2)求
的最小值










(1)求曲线


(2)求
