- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 求椭圆的离心率或离心率的取值范围
- 椭圆离心率大小与椭圆圆扁的关系
- + 根据离心率求椭圆的标准方程
- 相同离心率的椭圆的方程
- 由椭圆的离心率求参数的取值范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在平面直角坐标系xOy中,已知椭圆
1(a>b>0)的右顶点为(2,0),离心率为
,P是直线x=4上任一点,过点M(1,0)且与PM垂直的直线交椭圆于A,B两点.
(1)求椭圆的方程;
(2)若P点的坐标为(4,3),求弦AB的长度;
(3)设直线PA,PM,PB的斜率分别为k1,k2,k3,问:是否存在常数λ,使得k1+k3=λk2?若存在,求出λ的值;若不存在,说明理由.


(1)求椭圆的方程;
(2)若P点的坐标为(4,3),求弦AB的长度;
(3)设直线PA,PM,PB的斜率分别为k1,k2,k3,问:是否存在常数λ,使得k1+k3=λk2?若存在,求出λ的值;若不存在,说明理由.

已知椭圆
的离心率为
,左、右顶点分别为B、A,
,
是椭圆内一点,直线AM、BM分别与椭圆C交于P、Q两点.

(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若
的面积是
的面积的5倍,求实数m的值.





(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若


已知椭圆C:
的离心率为
,长轴长为
.
Ⅰ
求椭圆C的方程;
Ⅱ
斜率为1的直线l过椭圆C的右焦点F,交椭圆C于A,B两点,设M为椭圆C上任意一点,且
,其中O为原点
求证:
.










已知椭圆
的中心在坐标原点,离心率等于
,它的一个长轴端点恰好是抛物线
的焦点.
(1)求椭圆
的标准方程;
(2)已知
、
(
)是椭圆上的两点,
是椭圆上位于直线
两侧的动点,且直线
的斜率为
.
①求四边形APBQ的面积的最大值;
②求证:
.



(1)求椭圆

(2)已知







①求四边形APBQ的面积的最大值;
②求证:
