刷题首页
题库
高中数学
题干
已知椭圆的中心在原点,焦点为
,且离心率
.
求椭圆的方程;
求以点
为中点的弦所在的直线方程.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-20 11:38:12
答案(点此获取答案解析)
同类题1
已知在平面直角坐标系
中,中心在原点,焦点在
y
轴上的椭圆
C
与椭圆
的离心率相同,且椭圆
C
短轴的顶点与椭圆
E
长轴的顶点重合.
(1)求椭圆
C
的方程;
(2)若直线
l
与椭圆
E
有且仅有一个公共点,且与椭圆
C
交于不同两点
A
,
B
,求
的最大值.
同类题2
已知椭圆
:
的离心率
,且过焦点的最短弦长为3.
(1)求椭圆
的标准方程;
(2)设
分别是椭圆
的左、右焦点,过点
的直线
与曲线
交于不同的两点
、
,求
的内切圆半径的最大值.
同类题3
已知椭圆
的离心率
,其左、右顶点分别为点
,且点
关于直线
对称的点在直线
上.
(1)求椭圆
的方程;
(2)若点
在椭圆
上,点
在圆
上,且
都在第一象限,
轴,若直线
与
轴的交点分别为
,判断
是否为定值,若是定值,求出该定值;若不是定值,说明理由.
同类题4
在平面直角坐标系
中,已知椭圆
:
(
)的离心率
且椭圆
上的点到点
的距离的最大值为3.
(Ⅰ)求椭圆
的方程;
(Ⅱ)在椭圆
上,是否存在点
,使得直线
:
与圆
:
相交于不同的两点
、
,且
的面积最大?若存在,求出点
的坐标及对应的
的面积;若不存在,请说明理由.
同类题5
在平面直角坐标系
中,椭圆
的中心为原点,焦点
,
在
轴上,离心率为
.过
的直线
交
于
,
两点,且
的周长为
,那么椭圆
的方程为( )
A.
B.
C.
D.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
椭圆的中点弦