刷题首页
题库
高中数学
题干
已知椭圆
的离心率为
,以原点为圆心,椭圆的短半轴为半径的圆与直线
相切.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设
,
,
是椭圆
上关于
轴对称的任意两个不同的点,连结
交椭圆
于另一点
,证明直线
与
轴相交于定点
;
(Ⅲ)在(Ⅱ)的条件下,过点
的直线与椭圆
交于
,
两点,求
的取值范围.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-16 07:16:22
答案(点此获取答案解析)
同类题1
已知椭圆的中心在原点,焦点在
轴上,离心率为
,且经过点
,直线
交椭圆于不同的两点
.
(1)求椭圆的方程;
(2)求
的取值范围;
(3)若直线
不过点
,求证:直线
的斜率互为相反数.
同类题2
已知椭圆
的短轴长等于
,离心率为
.
(1)求椭圆
C
的方程;
(2)设
О
为坐标原点,过右焦点
F
的直线与椭圆
C
交于
A
、
B
两点(
A
、
B
不在
x
轴上),若
,求四边形
AOBE
面积
S
的最大值.
同类题3
已知椭圆
的离心率为
,
、
分别为椭圆
的左、右顶点,点
满足
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设直线
经过点
且与
交于不同的两点
、
,试问:在
轴上是否存在点
,使得直线
与直线
的斜率的和为定值?若存在,请求出点
的坐标及定值;若不存在,请说明理由.
同类题4
已知椭圆
的离心率为
,
,
,
分别为椭圆
的上、下顶点,点
.
(1)求椭圆
的方程;
(2)若直线
,
与椭圆
的另一交点分别为
,
,证明:直线
过定点.
同类题5
已知椭圆
的焦点在
轴上,若其离心率为
,则
的值是( )
A.
B.
C.
D.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程