刷题首页
题库
高中数学
题干
已知椭圆
的离心率为
,以原点为圆心,椭圆的短半轴为半径的圆与直线
相切.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设
,
,
是椭圆
上关于
轴对称的任意两个不同的点,连结
交椭圆
于另一点
,证明直线
与
轴相交于定点
;
(Ⅲ)在(Ⅱ)的条件下,过点
的直线与椭圆
交于
,
两点,求
的取值范围.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-16 07:16:22
答案(点此获取答案解析)
同类题1
已知椭圆的两焦点为
F
1
(-2
,0),
F
2
(2
,0),离心率
e
=
.
(1)求椭圆的方程;
(2)设直线
l
:
y
=
x
+
m
,若
l
与此椭圆相交于
P
,
Q
两点,且|
PQ
|等于椭圆的短轴长,求
m
的值.
同类题2
如图,中心在坐标原点,焦点分别在
轴和
轴上的椭圆
,
都过点
,且椭圆
与
的离心率均为
.
(Ⅰ)求椭圆
与椭圆
的标准方程;
(Ⅱ)过点
引两条斜率分别为
的直线分别交
,
于点P,Q,当
时,问直线PQ是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.
同类题3
在平面直角坐标系
中,已知椭圆
过点
,且离心率
.
(1)求椭圆
的方程;
(2)直线
的斜率为
,直线
与椭圆
交于
、
两点,求
的面积的最大值.
同类题4
已知椭圆
的离心率为
,以原点为圆心,椭圆短半轴长半径的圆与直线
相切.
(1)求
与
;
(2)设该椭圆的左、右焦点分别为
和
,直线
过
且与
轴垂直,动直线
与
轴垂直,
交
与点
.求线段
垂直平分线与
的交点
的轨迹方程,并指明曲线类型.
同类题5
已知椭圆
的左顶点为
,离心率为
,过点
且斜率为
的直线
与椭圆交于点
与
轴交于点
.
(1)求椭圆的方程;
(2)设点
为
的中点.
(i)若
轴上存在点
,对于任意的
,都有
(
为原点),求出点
的坐标;
(ii)射线
(
为原点)与椭圆
交于点
,满足
,求正数
的值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程