- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 求椭圆的离心率或离心率的取值范围
- 椭圆离心率大小与椭圆圆扁的关系
- + 根据离心率求椭圆的标准方程
- 相同离心率的椭圆的方程
- 由椭圆的离心率求参数的取值范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的离心率
,过焦点且垂直于x轴的直线被椭圆截得的线段长为3
(1)求椭圆的方程;
(2)已知P为直角坐标平面内一定点,动直线l:
与椭圆交于A、B两点,当直线PA与直线PB的斜率均存在时,若直线PA与PB的斜率之和为与t无关的常数,求出所有满足条件的定点P的坐标.


(1)求椭圆的方程;
(2)已知P为直角坐标平面内一定点,动直线l:

如图,椭圆
:
的离心率为
,设
,
分别为椭圆
的右顶点,下顶点,
的面积为1.

(1)求椭圆
的方程;
(2)已知不经过点
的直线
:
交椭圆于
,
两点,线段
的中点为
,若
,求证:直线
过定点.








(1)求椭圆

(2)已知不经过点









已知椭圆
.

(Ⅰ)若椭圆
的离心率为
,求
的值;
(Ⅱ)若过点
任作一条直线
与椭圆
交于不同的两点
,
,在
轴上是否存在点
,使得
?若存在,求出点
的坐标;若不存在,请说明理由.


(Ⅰ)若椭圆



(Ⅱ)若过点









已知椭圆
的离心率为
,定点
,椭圆短轴的端点是
、
,且
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设过点
且斜率不为
的直线交椭圆
于
,
两点.试问
轴上是否存在定点
,使
平分
?若存在,求出点
的坐标;若不存在,说明理由.







(Ⅰ)求椭圆

(Ⅱ)设过点










已知椭圆
的离心率为
,椭圆
的四个顶点围成的四边形的面积为
.
(1)求椭圆
的标准方程;
(2)设
为椭圆
的右顶点,过点
且斜率不为0的直线
与椭圆
相交于
,
两点,记直线
,
的斜率分别为
,
,求证:
为定值.




(1)求椭圆

(2)设












设椭圆
的上顶点为A,右顶点为B,离心率为
,
.
(1)求椭圆的方程;
(2)不经过点A的直线
与椭圆交于M、N两点,若以MN为直径的圆经过点A,求证:直线
过定点,并求出该定点的坐标.



(1)求椭圆的方程;
(2)不经过点A的直线


已知椭圆
:
经过点
,且离心率为
.
(I)求椭圆
的方程;
(II)若一组斜率为
的平行线,当它们与椭圆
相交时,证明:这组平行线被椭圆
截得的线段的中点在同一条直线上.




(I)求椭圆

(II)若一组斜率为



在平面直角坐标系xOy中,已知椭圆C:
的离心率为
,右准线方程为
.
求椭圆C的标准方程;
已知斜率存在且不为0的直线l与椭圆C交于A,B两点,且点A在第三象限内
为椭圆C的上顶点,记直线MA,MB的斜率分别为
,
.
若直线l经过原点,且
,求点A的坐标;
若直线l过点
,试探究
是否为定值?若是,请求出定值;若不是,请说明理由.












