刷题首页
题库
高中数学
题干
已知椭圆
.
(Ⅰ)若椭圆
的离心率为
,求
的值;
(Ⅱ)若过点
任作一条直线
与椭圆
交于不同的两点
,
,在
轴上是否存在点
,使得
?若存在,求出点
的坐标;若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2017-02-28 02:19:49
答案(点此获取答案解析)
同类题1
椭圆
:
的离心率为
,右顶点为
,下顶点为
,且
.
(1)求椭圆
的方程;
(2)若椭圆
与直线
相交于
,
两点,直线
,
分别与
轴交于
,
两点.试探究
,
两点的横坐标的乘积是否为定值,说明理由.
同类题2
已知椭圆
:
的离心率
,左、右焦点分别为
,
,点
满足:
在线段
的中垂线上.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若斜率为
(
)的直线
与
轴、椭圆
顺次相交于点
、
、
,且
,求
的取值范围.
同类题3
已知点
是椭圆
C
:
上的一点,椭圆
C
的离心率与双曲线
的离心率互为倒数,斜率为
直线
l
交椭圆
C
于
B
,
D
两点,且
A
、
B
、
D
三点互不重合.
(1)求椭圆
C
的方程;
(2)若
分别为直线
AB
,
AD
的斜率,求证:
为定值.
同类题4
在平面直角坐标系
xOy
中,已知椭圆
C
:
的离心率为
,右准线方程为
.
求椭圆
C
的标准方程;
已知斜率存在且不为0的直线
l
与椭圆
C
交于
A
,
B
两点,且点
A
在第三象限内
为椭圆
C
的上顶点,记直线
MA
,
MB
的斜率分别为
,
.
若直线
l
经过原点,且
,求点
A
的坐标;
若直线
l
过点
,试探究
是否为定值?若是,请求出定值;若不是,请说明理由.
同类题5
设点
为椭圆
的右焦点,点
在椭圆
上,已知椭圆
的离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设过右焦点
的直线
与椭圆相交于
,
两点,记
三条边所在直线的斜率的乘积为
,求
的最大值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
椭圆中的直线过定点问题