刷题首页
题库
高中数学
题干
已知椭圆
的离心率
,过焦点且垂直于x轴的直线被椭圆截得的线段长为3
(1)求椭圆的方程;
(2)已知P为直角坐标平面内一定点,动直线l:
与椭圆交于A、B两点,当直线PA与直线PB的斜率均存在时,若直线PA与PB的斜率之和为与t无关的常数,求出所有满足条件的定点P的坐标.
上一题
下一题
0.99难度 解答题 更新时间:2019-05-30 06:38:12
答案(点此获取答案解析)
同类题1
已知椭圆
:
的离心率为
,点
在椭圆上,
为坐标原点.
(Ⅰ)求椭圆
的方程;
(Ⅱ)已知点
、
、
为椭圆
上的三点,若四边形
为平行四边形,证明四边形
的面积
为定值,并求出该定值.
同类题2
已知椭圆
C
:
,(
a
>
b
>0)过点(1,
)且离心率为
.
(1)求椭圆
C
的方程;
(2)设椭圆
C
的右顶点为
P
,过定点(2,﹣1)的直线
l
:
y
=
kx
+
m
与椭圆
C
相交于异于点
P
的
A
,
B
两点,若直线
PA
,
PB
的斜率分别为
k
1
,
k
2
,求
k
1
+
k
2
的值.
同类题3
已知椭圆
经过点
离心率
.
(Ⅰ)求椭圆的方程;
(Ⅱ)经过椭圆左焦点
的直线(不经过点
且不与
轴重合)与椭圆交于
两点,与直线
:
交于点
,记直线
的斜率分别为
.则是否存在常数
,使得向量
共线?若存在求出
的值;若不存在,说明理由.
同类题4
已知椭圆
过点
,且离心率
.
(1)求椭圆
的方程;
(2)设直
交椭圆
于
两点,判断点
与以线段
为直径的圆的位置关系,并说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
椭圆中存在定点满足某条件问题