刷题首页
题库
高中数学
题干
设椭圆
的上顶点为
A
,右顶点为
B
,离心率为
,
.
(1)求椭圆的方程;
(2)不经过点
A
的直线
与椭圆交于
M
、
N
两点,若以
MN
为直径的圆经过点
A
,求证:直线
过定点,并求出该定点的坐标.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-07 12:59:15
答案(点此获取答案解析)
同类题1
已知椭圆
的焦点为
,
,离心率为
,点
P
为椭圆
C
上一动点,且
的面积最大值为
,
O
为坐标原点.
(1)求椭圆
C
的方程;
(2)设点
,
为椭圆
C
上的两个动点,当
为多少时,点
O
到直线
MN
的距离为定值.
同类题2
圆锥曲线
的离心率
,则
m
的值为( )
A.
B.4
C.
或4
D.-2或4
同类题3
椭圆C:
(a>b>0)的离心率为
,P(m,0)为C的长轴上的一个动点,过P点斜率为
的直线l交C于A、B两点.当m=0时,
(1)求C的方程;
(2)求证:
为定值.
同类题4
已知椭圆
:
(
)的离心率为
,
为椭圆
上位于第一象限内的一点.
(1)若点
的坐标为
,求椭圆
的标准方程;
(2)设
为椭圆
的左顶点,
为椭圆
上一点,且
,求直线
的斜率.
相关知识点
平面解析几何
平面解析几何
圆锥曲线
圆锥曲线
椭圆
椭圆