刷题首页
题库
高中数学
题干
已知椭圆
:
经过点
,且离心率为
.
(I)求椭圆
的方程;
(II)若一组斜率为
的平行线,当它们与椭圆
相交时,证明:这组平行线被椭圆
截得的线段的中点在同一条直线上.
上一题
下一题
0.99难度 解答题 更新时间:2018-02-08 02:47:17
答案(点此获取答案解析)
同类题1
已知椭圆
的离心率为
,焦距为
.斜率为
的直线
与椭圆
有两个不同的交点
、
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若
,求
的最大值;
(Ⅲ)设
,直线
与椭圆
的另一个交点为
,直线
与椭圆
的另一个交点为
.若
、
和点
共线,求
.
同类题2
求适合下列条件的椭圆的标准方程:
(1)焦点在
x
轴上,
a
=4,
c
=2;
(2)短轴长为6,离心率为
同类题3
在平面直角坐标系
中,已知椭圆
的离心率为
,两个顶点分别为
,
.过点
的直线交椭圆于
,
两点,直线
与
的交点为
.
(1)求椭圆的标准方程;
(2)求证:点
在一条定直线上.
同类题4
已知椭圆
的离心率
,
,
,
是椭圆上三个不同的点,
F
为其右焦点,且
,
,
成等差数列
(1)求椭圆的方程;
(2)求
的值;
(3)若线段
AC
的垂直平分线与
x
轴交点为
D
,求直线
BD
的斜率
k
.
同类题5
已知椭圆
经过点
.离心率
.
(1)求椭圆
C
的标准方程;
(2)若
M
,
N
分别是椭圆长轴的左、右端点,动点
D
满足
,连接
MD
交椭圆于点
Q
.问:
x
轴上是否存在异于点
M
的定点
G
,使得以
QD
为直径的圆恒过直线
QN
,
GD
的交点?若存在,求出点
G
的坐标;若不存在,说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
椭圆的中点弦