刷题首页
题库
高中数学
题干
已知椭圆
:
经过点
,且离心率为
.
(I)求椭圆
的方程;
(II)若一组斜率为
的平行线,当它们与椭圆
相交时,证明:这组平行线被椭圆
截得的线段的中点在同一条直线上.
上一题
下一题
0.99难度 解答题 更新时间:2018-02-08 02:47:17
答案(点此获取答案解析)
同类题1
已知椭圆
上任意一点
到两焦点的距离之和为6,且椭圆的离心率为
,则椭圆方程为( )
A.
B.
C.
D.
同类题2
(本小题满分16分)已知椭圆
的离心率为
,并且椭圆经过点
,过原点
的直线
与椭圆
交于
两点,椭圆上一点
满足
.
(1)求椭圆
的方程;
(2)证明:
为定值;
(3)是否存在定圆,使得直线
绕原点
转动时,
恒与该定圆相切,若存在,求出该定圆的方程,若不存在,说明理由.
同类题3
设椭圆
的右焦点为
,离心率为
,过点
且与
轴垂直的直线被椭圆截得的线段长为
.
(1)求椭圆
的方程;
(2)若
上存在两点
,椭圆
上存在两个
点满足:
三点共线,
三点共线,且
,求四边形
的面积的最小值.
同类题4
已知双曲线
的离心率为
,左、右焦点分别为
、
,一条准线的方程为
.
(1)求双曲线
的方程;
(2)若双曲线
上的一点
满足
,求
的值;
(3)若直线
与双曲线
交于不同的两点
,且
在以
为圆心的圆上,求实数
的取值范围.
同类题5
焦点在
y
轴上的椭圆
mx
2
+
y
2
=1的离心率为
,则
m
的值为( )
A.1
B.2
C.3
D.4
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
椭圆的中点弦