刷题首页
题库
高中数学
题干
已知长度为
的线段
的两个端点
、
分别在
轴和
轴上运动,动点
满足
,设动点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)过点
且斜率不为零的直线
与曲线
交于两点
、
,在
轴上是否存在定点
,使得直线
与
的斜率之积为常数.若存在,求出定点
的坐标以及此常数;若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2018-04-20 04:26:23
答案(点此获取答案解析)
同类题1
已知椭圆
的离心率为
,点
在椭圆上.
(I)求椭圆C的方程;
(II)设椭圆的左右顶点分别是A、B,过点
的动直线与椭圆交于M,N两点,连接AN、BM相交于G点,试求点G的横坐标的值.
同类题2
椭圆
的离心率为
而且过点
,其长轴的左右端点分别为
,
,直线
交椭圆于
,
两点.
(1)求椭圆的标准方程;
(2)设直线
,
的斜率分别为
,
,若
,求
的值.
同类题3
已知椭园
,
为长轴的一个端点,弦
过椭圆的中心
,且
,
,则其短轴长为 ( )
A.
B.
C.
D.
同类题4
已知椭圆
的离心率为
,且
过点
.
(1)求椭圆
的方程;
(2)若直线
与椭圆
交于
两点(点
均在第一象限),且直线
的斜率成等比数列,证明:直线
的斜率为定值.
同类题5
(江苏省南京市2018届高三第三次模拟考试数学试题)如图,在平面直角坐标系
中,椭圆
经过点
,离心率为
. 已知过点
的直线
与椭圆
交于
两点.
(1)求椭圆
的方程;
(2)试问
轴上是否存在定点
,使得
为定值.若存在,求出点
的坐标;若不存在,请说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
椭圆中存在定点满足某条件问题