刷题首页
题库
高中数学
题干
已知长度为
的线段
的两个端点
、
分别在
轴和
轴上运动,动点
满足
,设动点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)过点
且斜率不为零的直线
与曲线
交于两点
、
,在
轴上是否存在定点
,使得直线
与
的斜率之积为常数.若存在,求出定点
的坐标以及此常数;若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2018-04-20 04:26:23
答案(点此获取答案解析)
同类题1
如图,已知椭圆
,
是长轴的一个端点,弦
过椭圆的中心
,且
.
(1)求椭圆
的方程.
(2)过椭圆
右焦点
的直线,交椭圆
于
两点,交直线
于点
,判定直线
的斜率是否依次构成等差数列?请说明理由.
同类题2
若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点
,则椭圆方程是()
A.
B.
C.
D.
同类题3
已知
为椭圆
C
:
1(
a
>
b
>0)的一个焦点,且点
在椭圆
C
上.
(1)求椭圆
C
的方程;
(2)若点
P
(
m
,0)为椭圆
C
的长轴上一动点,过
P
且斜率为
的直线
l
交椭圆
C
于
A
,
B
两点,求证|
PA
|
2
+|
PB
|
2
为定值.
同类题4
已知椭圆
的离心率为
,直线
过点
,
,且与椭圆
相切于点
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过点
的动直线与曲线
相交于不同的两点
、
,曲线
在点
、
处的切线交于点
.试问:点
是否在某一定直线上,若是,试求出定直线的方程;否则,请说明理由.
同类题5
(1)椭圆的焦点在
轴上,焦距等于4,并且经过点
,求该椭圆的方程;
(2)双曲线
C
与椭圆
有相同的焦点,直线
为
C
的一条渐近线,求双曲线
C
的方程.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
椭圆中存在定点满足某条件问题