刷题首页
题库
高中数学
题干
已知离心率为
的椭圆
过点
作两条互相垂直的直线,分别交椭圆于
两点.
(1)求椭圆
方程;
(2)求证:直线
过定点,并求出此定点的坐标.
上一题
下一题
0.99难度 解答题 更新时间:2018-10-20 04:38:51
答案(点此获取答案解析)
同类题1
已知椭圆
E
:
(
)过点
,且它的右焦点为
.
(1)求椭圆
E
的方程;
(2)过
A
且倾斜角互补的两直线分别交椭圆
E
于点
B
、
C
(不同于点
A
),且
,求直线
AB
的方程.
同类题2
已知椭圆
(
)的两个焦点
,
,点
在此椭圆上.
(1)求椭圆
的方程;
(2)过点
的直线
与椭圆
相交于
两点,设点
,记直线
的斜率分别为
,求证:
为定值.
同类题3
已知椭圆
(
)的一个焦点坐标为
,点
在
上.
(1)求
的方程;
(2)直线
不经过原点
,且不平行于坐标轴,
与
有两个交点
、
,线段
中点为
,证明:直线
的斜率与直线
的斜率乘积为定值.
同类题4
已知椭圆
:
经过点
,左右焦点分别为
、
,圆
与直线
相交所得弦长为2.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)设
是椭圆
上不在
轴上的一个动点,
为坐标原点,过点
作
的平行线交椭圆
于
、
两个不同的点.
(1)试探究
的值是否为一个常数?若是,求出这个常数;若不是,请说明理由.
(2)记
的面积为
,
的面积为
,令
,求
的最大值.
同类题5
焦点在
x
轴上的椭圆
C
:
经过点
,椭圆
C
的离心率为
.
,
是椭圆的左、右焦点,
P
为椭圆上任意点.
(1)求椭圆的标准方程;
(2)若点
M
为
的中点(
O
为坐标原点),过
M
且平行于
OP
的直线
l
交椭圆
C
于
A
,
B
两点,是否存在实数
,使得
;若存在,请求出
的值,若不存在,请说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
椭圆中的直线过定点问题