- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- + 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
:
的离心率为
,点
和点

都在椭圆
上,直线
交
轴于点
.
(Ⅰ)求椭圆
的方程,并求点
的坐标(用
,
表示);
(Ⅱ)设
为原点,点
与点
关于
轴对称,直线
交
轴于点
.问:
轴上是否存在点
,使得
?若存在,求点
的坐标;若不存在,说明理由.






都在椭圆




(Ⅰ)求椭圆




(Ⅱ)设











已知椭圆
的离心率为
,且过点
,若点
在椭圆C上,则点
称为点M的一个“椭点”.
(1)求椭圆C的标准方程;
(2)若直线
与椭圆C相交于A,B两点,且A,B两点的“椭点”分别为P,Q,以PQ为直径的圆经过坐标原点,试判断
的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.





(1)求椭圆C的标准方程;
(2)若直线


已知椭圆
的长轴长为
,焦距为2,抛物线
的准线经过椭圆
的左焦点
.
(1)求椭圆
与抛物线
的方程;
(2)直线
经过椭圆
的上顶点且
与抛物线
交于
,
两点,直线
,
与抛物线
分别交于点
(异于点
),
(异于点
),证明:直线
的斜率为定值.





(1)求椭圆


(2)直线














已知椭圆
的左、右焦点分别为
,
是椭圆上一动点(与左、右顶点不重合)已知
的内切圆半径的最大值为
,椭圆的离心率为
.
(1)求椭圆C的方程;
(2)过
的直线
交椭圆
于
两点,过
作
轴的垂线交椭圆
与另一点
(
不与
重合).设
的外心为
,求证
为定值.






(1)求椭圆C的方程;
(2)过













已知椭圆的中心在原点,焦点在
轴上,长轴长是短轴长的2倍且经过点
,平行于
的直线
在
轴上的截距为
,
交椭圆于
两个不同点.
(1)求椭圆的标准方程以及
的取值范围;
(2)求证直线
与
轴始终围成一个等腰三角形.








(1)求椭圆的标准方程以及

(2)求证直线


已知椭圆
,焦距为
.
(1)求椭圆
的标准方程;
(2)若一直线
与椭圆
相交于
、
两点(
、
不是椭圆的顶点),以
为直径的圆过椭圆
的上顶点,求证:直线
过定点,并求出该定点的坐标.


(1)求椭圆

(2)若一直线









已知焦距为
的椭圆
:
与椭圆
:
有相同的离心率.
(1)求椭圆
的方程;
(2)设直线
与椭圆
交于
、
两点,且直线
与圆
:
总相切,求弦长
的取值范围.





(1)求椭圆

(2)设直线







