刷题首页
题库
高中数学
题干
已知椭圆
的左、右焦点分别为
,
是椭圆上一动点(与左、右顶点不重合)已知
的内切圆半径的最大值为
,椭圆的离心率为
.
(1)求椭圆
C
的方程;
(2)过
的直线
交椭圆
于
两点,过
作
轴的垂线交椭圆
与另一点
(
不与
重合).设
的外心为
,求证
为定值.
上一题
下一题
0.99难度 解答题 更新时间:2020-03-02 09:52:26
答案(点此获取答案解析)
同类题1
已知椭圆E:
的离心率为
分别是它的左、右焦点,
.
(1)求椭圆E的方程;
(2)过椭圆E的上顶点A作斜率为
的两条直线AB,AC,两直线分别与椭圆交于B,C两点,当
时,直线BC是否过定点?若是求出该定点,若不是请说明理由.
同类题2
已知椭圆
的左焦点为
,右顶点为
,上顶点为
,
,
(
为坐标原点).
(1)求椭圆
的方程;
(2)定义:曲线
在点
处的切线方程为
.若抛物线
上存在点
(不与原点重合)处的切线交椭圆于
、
两点,线段
的中点为
.直线
与过点
且平行于
轴的直线的交点为
,证明:点
必在定直线上.
同类题3
已知椭圆
的短轴长为4,离心率为
,斜率不为0的直线
与椭圆恒交于
,
两点,且以
为直径的圆过椭圆的右顶点
(
,
两点不与点
重合).
(1)求椭圆的标准方程;
(2)直线
是否过定点,如果过定点,求出该定点的坐标;如果不过定点,请说明理由.
同类题4
已知椭圆
经过点
,离心率
,其中
分别表示标准正态分布的期望值与标准差.
(1)求椭圆C的方程;
(2)设直线
与椭圆C交于A,B两点,点A关于x轴的对称点为
.
①试建立
的面积关于m的函数关系;②莆田十中高三(1)班数学兴趣小组通过试验操作初步推断:“当m变化时,直线
与x轴交于一个定点”.你认为此推断是否正确?若正确,请写出定点坐标,并证明你的结论;若不正确,请说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定值问题