刷题首页
题库
高中数学
题干
已知椭圆
,焦距为
.
(1)求椭圆
的标准方程;
(2)若一直线
与椭圆
相交于
、
两点(
、
不是椭圆的顶点),以
为直径的圆过椭圆
的上顶点,求证:直线
过定点,并求出该定点的坐标.
上一题
下一题
0.99难度 解答题 更新时间:2020-03-02 10:54:50
答案(点此获取答案解析)
同类题1
椭圆
的离心率为
,
、
分别是左、右焦点,过
的直线与圆
相切,且与椭圆
交于
、
两点.
(1)当
时,求椭圆
的方程;
(2)求弦
中点的轨迹方程.
同类题2
已知椭圆
:
的一个焦点
,点
在椭圆
上.
(Ⅰ)求椭圆
的方程;
(Ⅱ)直线
平行于直线
(
坐标原点),且与椭圆
交于
,
两个不同的点,若
为钝角,求直线
在
轴上的截距
的取值范围.
同类题3
如图,已知直线
的右焦点
,且交椭圆
于
两点,点
在直线
上的射影依次为点
.
(Ⅰ)已知抛物线
的焦点为椭圆
的上顶点.
①求椭圆
的方程;
②若直线
交
轴于点
,且
,当
变化时,求
的值;
(Ⅱ)连接
,试探索当
变化时,直线
是否相交于一定点
?若交于定点
,请求出
点的坐标并给予证明;否则说明理由.
同类题4
已知椭圆
:
(
)的左右焦点分别为
,
,短轴两个端点为
,
,且四边形
是边长为
的正方形。
(1)求椭圆
的方程;
(2)已知圆的方程是
,过圆上任一点
作椭圆
的两条切线
,
,求证:
同类题5
已知椭圆
:
的离心率
,过椭圆的左焦点
且倾斜角为
的直线与圆
相交所得弦长为
.
(1)求椭圆
的方程;
(2)是否存在过点
的直线
与椭圆
交于
两点,且
,若存在,求直线
的方程;若不存在,说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的直线过定点问题