- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- + 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,
,
是离心率为
的椭圆的左、右顶点,
,
是该椭圆的左、右焦点,
,
是直线
上两个动点,连接
和
,它们分别与椭圆交于点
,
两点,且线段
恰好过椭圆的左焦点
.当
时,点
恰为线段
的中点.

(1)求椭圆的方程;
(Ⅱ)判断以
为直径的圆与直线
位置关系,并加以证明.


















(1)求椭圆的方程;
(Ⅱ)判断以


已知F
是椭圆C的一个焦点,且椭圆C上的点到点F的最大距离为8
(1)求椭圆C的标准方程;
(2)已知圆
:
,直线
. 求当点
在椭圆C上运动时,直线
被圆
所截得的弦长的取值范围.

(1)求椭圆C的标准方程;
(2)已知圆






.已知圆
与直线
相切.
(1)求以圆O与y轴的交点为顶点,直线在
轴上的截距为半长轴长的椭圆C方程;
(2)已知点A
,若直线与椭圆C有两个不同的交点E,F,且直线AE的斜率与直线
AF的斜率互为相反数;问直线的斜率是否为定值?若是求出这个定值;若不是,请说明理由.


(1)求以圆O与y轴的交点为顶点,直线在

(2)已知点A

AF的斜率互为相反数;问直线的斜率是否为定值?若是求出这个定值;若不是,请说明理由.
如图,在平面直角坐标系
中,已知
,直线
与线段
、
分别交于点
、
.
(Ⅰ)当
时,求以
为焦点,且过
中点的椭圆的标准方程;
(Ⅱ)过点
作直线
交
于点
,记
的外接圆为圆
.
① 求证:圆心
在定直线
上;
② 圆
是否恒过异于点
的一个定点?若过,求出该点的坐标;若不过,请说明理由.







(Ⅰ)当



(Ⅱ)过点






① 求证:圆心


② 圆



已知椭圆
的离心率为
,以原点为圆心,椭圆短半轴长为半径的圆与直线
相切,
分别是椭圆的左右两个顶点,
为椭圆
上的动点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)
为过
且垂直于
轴的直线上的点,若
,求点
的轨迹方程,并说明轨迹是什么曲线.






(Ⅰ)求椭圆的标准方程;
(Ⅱ)





如图,已知椭圆
的长轴为
,过点
的直线
与
轴垂直.直线
所经过的定点恰好是椭圆的一个顶点,且椭圆的离心率
.
(1)求椭圆的标准方程;
(2)设
是椭圆上异于
、
的任意一点,
轴,
为垂足,延长
到点
使得
,连结
延长交直线
于点
,
为
的中点.试判断直线
与以
为直径的圆
的位置关系.







(1)求椭圆的标准方程;
(2)设

















小颖用计算器探索方程ax2+bx+c=0的根,作出如图所示的图象,并求得一个近似根x=﹣3.4,则方程的另一个近似根(精确到0.1)为( )
已知椭圆
的右焦点
,且经过点
,点
是
轴上的一点,过点
的直线
与椭圆
交于
两点(点
在
轴的上方)
(1)求椭圆
的方程;
(2)若
,且直线
与圆
相切于点
,求
的长.











(1)求椭圆

(2)若






已知
是椭圆E:
的两个焦点,抛物线
的焦点为椭圆E的一个焦点,直线y=
上到焦点F1,F2距离之和最小的点P恰好在椭圆E上,

(1)求椭圆E的方程;
(2)如图,过点
的动直线
交椭圆于A、B两点,是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,请说明理由.





(1)求椭圆E的方程;
(2)如图,过点

