- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- + 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的左焦点为F,左右顶点分别为A、C,上顶点为B,过F,B,C三点作
,其中圆心P的坐标为
.
(1) 若椭圆的离心率
,求
的方程;
(2) 若
的圆心在直线
上,求椭圆的方程.



(1) 若椭圆的离心率


(2) 若


已知椭圆
的离心率为
,以原点为圆心,椭圆C的短半轴长为半径的圆与直线
相切.
、
是椭圆的左、右顶点,直线
过
点且与
轴垂直.

(1)求椭圆
的标准方程;
(2)设
是椭圆
上异于
、
的任意一点,作
轴于点
,延长
到点
使得
,连接
并延长交直线
于点
,
为线段
的中点,判断直线
与以
为直径的圆
的位置关系,并证明你的结论.










(1)求椭圆

(2)设

















在平面直角坐标系xOy中,已知椭圆C:
(m>0)的离心率为
,A,B分别为椭圆的左、右顶点,F是其右焦点,P是椭圆C上异于A、B的动点.
(1)求m的值及椭圆的准线方程;
(2)设过点B且与x轴的垂直的直线交AP于点D,当直线AP绕点A转动时,试判断以BD为直径的圆与直线PF的位置关系,并加以证明.


(1)求m的值及椭圆的准线方程;
(2)设过点B且与x轴的垂直的直线交AP于点D,当直线AP绕点A转动时,试判断以BD为直径的圆与直线PF的位置关系,并加以证明.

已知椭圆
的离心率为
,右焦点为
,上顶点为
,且
的面积为
(
是坐标原点).
(1)求椭圆
的方程;
(2)设
是椭圆
上的一点,过
的直线
与以椭圆的短轴为直径的圆切于第一象限,切点为
,证明:
为定值.







(1)求椭圆

(2)设






椭圆中心为坐标原点O,对称轴为坐标轴,且过M(2,
) ,N(
,1)两点,
(I)求椭圆的方程;
(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C恒有两个交点A,B,且
?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由.


(I)求椭圆的方程;
(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C恒有两个交点A,B,且

已知椭圆
的中心在原点,其中一个焦点与抛物线
的焦点重合,点
在椭圆
上.
(1)求椭圆
的方程;
(2)设椭圆的左右焦点分别为
,过
的直线
与椭圆
相交于
两点,若
的面积为
,求以
为圆心且与直线
相切的圆的方程.




(1)求椭圆

(2)设椭圆的左右焦点分别为









已知椭圆
:
的离心率为
,圆
:
与
轴交于点
、
,
为椭圆
上的动点,
,
面积最大值为
.
(1)求圆
与椭圆
的方程;
(2)圆
的切线
交椭圆于点
、
,求
的取值范围.













(1)求圆


(2)圆




