- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- + 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
(
)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.
(1)求椭圆
的标准方程;
(2)设
为椭圆
的左焦点,直线
,
为椭圆上任意一点,证明:点
到
的距离是点
到
距离的
倍.


(1)求椭圆

(2)设









已知椭圆
的左、右焦点分别为
,左、右顶点分别为
,过
作斜率不为零的直线
与椭圆交于
两点,
的周长为
,椭圆上一点
与
连线的斜率之积
(点
不是左右顶点).
(1)求该椭圆方程;
(2)已知定点
,求椭圆上动点N与M点距离的最大值.












(1)求该椭圆方程;
(2)已知定点







(1)求椭圆

(2)设过椭圆右焦点







已知在平面直角坐标系
中的一个椭圆,它的中心在原点,左焦点为
,右顶点为
,设点
.
(1)求该椭圆的标准方程;
(2)若
是椭圆上的动点,求线段
中点
的轨迹方程;
(3)过原点
的直线交椭圆于点
,求
面积的最大值.




(1)求该椭圆的标准方程;
(2)若



(3)过原点



在直角坐标系
中,设椭圆
的左右两个焦点分别为
,
,过右焦点
且与
轴垂直的直线
与椭圆
相交,其中一个交点为
.
(1)求椭圆
的方程;
(2)若椭圆
的一个顶点为
,直线
交椭圆
于另一点
,求
的面积.









(1)求椭圆

(2)若椭圆






设椭圆
的两个焦点分别是
,
是椭圆上任意一点,
的周长是
.
(1)求椭圆的方程.
(2)过椭圆在
轴负半轴上的顶点
及椭圆右焦点
作一直线交椭圆于另一点
,求
的面积.





(1)求椭圆的方程.
(2)过椭圆在





已知椭圆
,
,左、右焦点为
,点
在椭圆
上,且点
关于原点对称,直线
的斜率的乘积为
.
(1)求椭圆
的方程;
(2)已知直线
经过点
,且与椭圆
交于不同的两点
,若
,判断直线
的斜率是否为定值?若是,请求出该定值;若不是,请说明理由.








(1)求椭圆

(2)已知直线





