刷题首页
题库
高中数学
题干
已知椭圆
(
)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.
(1)求椭圆
的标准方程;
(2)设
为椭圆
的左焦点,直线
,
为椭圆上任意一点,证明:点
到
的距离是点
到
距离的
倍.
上一题
下一题
0.99难度 解答题 更新时间:2019-11-14 07:09:52
答案(点此获取答案解析)
同类题1
已知椭圆
的长轴长是短轴长的2倍,且过点
.
(1)求椭圆的标准方程;
(2)直线
交椭圆于
两点,若点
始终在以
为直径的圆内,求实数
的取值范围.
同类题2
已知椭圆中心在原点,一个焦点为
,且长轴长是短轴长的2倍.则该椭圆的长轴长为______;其标准方程是________.
同类题3
已知椭圆C:
(
)的离心率为
,
,
,
,
的面积为1.
(1)求椭圆C的方程;
(2)斜率为2的直线与椭圆交于
、
两点
,求直线
的方程;
(3)在
轴上是否存在一点
,使得过点
的任一直线与椭圆若有两个交点
、
则都有
为定值?若存在,求出点
的坐标及相应的定值.
同类题4
已知椭圆
的离心率为
,椭圆
的四个顶点围成的四边形的面积为
.
(1)求椭圆
的标准方程;
(2)设
为椭圆
的右顶点,过点
且斜率不为0的直线
与椭圆
相交于
,
两点,记直线
,
的斜率分别为
,
,求证:
为定值.
同类题5
已知椭圆
的右焦点为
,点
在椭圆上.
(Ⅰ)求椭圆的方程;
(Ⅱ)点
在圆
上,且
在第一象限,过
作
的切线交椭圆于
两点,问:
的周长是否为定值?若是,求出定值;若不是,说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定值问题