- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- + 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的中心在原点,焦点在
轴上,离心率等于
,它的一个顶点恰好在抛物线
的准线上.
(Ⅰ)求椭圆
的标准方程.
(Ⅱ)点
,
在椭圆上,
,
是椭圆上位于直线
两侧的动点.
(i)若直线
的斜率为
,求四边形
面积的最大值.
(ii)当
,
运动时,满足
,试问直线
的斜率是否为定值,请说明理由.




(Ⅰ)求椭圆

(Ⅱ)点





(i)若直线



(ii)当





在平面直角坐标系
中,椭圆
:
的离心率为
,焦距为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)如图,动直线
:
交椭圆
于
两点,
是椭圆
上一点,直线
的斜率为
,且
,
是线段
延长线上一点,且
,
的半径为
,
是
的两条切线,切点分别为
.求
的最大值,并求取得最大值时直线
的斜率.






(Ⅰ)求椭圆

(Ⅱ)如图,动直线




















已知椭圆
的离心率
,左、右焦点分别为
,且
与抛物线
的焦点重合.
(1)求椭圆的标准方程;
(2)若过
的直线交椭圆于
两点,过
的直线交椭圆于
两点,且
,求
的最小值.





(1)求椭圆的标准方程;
(2)若过






已知椭圆
:
的离心率为
,焦距为
.
(1)求
的方程;
(2)若斜率为
的直线
与椭圆
交于
,
两点(点
,
均在第一象限),
为坐标原点,证明:直线
,
,
的斜率依次成等比数列.




(1)求

(2)若斜率为











已知椭圆
的左、右焦点分别为
,若椭圆经过点
,且
的面积为
.
(1)求椭圆
的标准方程;
(2)设斜率为
的直线
与以原点为圆心,半径为
的圆交于
两点,与椭圆
交于
两点,且
,当
取得最小值时,求直线
的方程并求此时
的值.





(1)求椭圆

(2)设斜率为










已知椭圆
的离心率为
,点
为椭圆上一点.
(1)求椭圆C的方程;
(2)已知两条互相垂直的直线
,
经过椭圆
的右焦点
,与椭圆
交于
四点,求四边形
面积的的取值范围.



(1)求椭圆C的方程;
(2)已知两条互相垂直的直线







椭圆
经过点
,左、右焦点分别是
,
,
点在椭圆上,且满足
的
点只有两个.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过
且不垂直于坐标轴的直线
交椭圆
于
,
两点,在
轴上是否存在一点
,使得
的角平分线是
轴?若存在求出
,若不存在,说明理由.







(Ⅰ)求椭圆

(Ⅱ)过










已知椭圆
:
的离心率为
,且经过点
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)与
轴不垂直的直线
经过
,且与椭圆
交于
,
两点,若坐标原点
在以
为直径的圆内,求直线
斜率的取值范围.




(Ⅰ)求椭圆

(Ⅱ)与








