- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- + 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的中心在原点,一个焦点为
,且
经过点
.
(1)求
的方程;
(2)设
与
轴的正半轴交于点
,直线
:
与
交于
、
两点(
不经过
点),且
.证明:直线
经过定点,并求出该定点的坐标.




(1)求

(2)设












已知离心率为
的椭圆
,与直线
交于
两点,记直线
的斜率为
,直线
的斜率为
.
(1)求椭圆方程;
(2)若
,则三角形
的面积是否为定值?若是,求出这个定值;若不是,请说明理由.








(1)求椭圆方程;
(2)若


设椭圆
:
的离心率为
,且以椭圆上顶点为圆心,半径为
的圆恰好经过椭圆
的两焦点.
(1)求椭圆
的标准方程;
(2)过定点
的直线交椭圆
于两点
、
,椭圆上的点
满足
,试求
的面积.





(1)求椭圆

(2)过定点







设椭圆
的离心率为
,以椭圆四个顶点为顶点的四边形的面积为
.
(1)求
的方程;
(2)过
的左焦点
作直线
与
交于
两点,过右焦点
作直线
与
交于
两点,且
,以
为顶点的四边形的面积
,求
与
的方程.



(1)求

(2)过














已知椭圆
的短轴长为4,离心率为
,斜率不为0的直线
与椭圆恒交于
,
两点,且以
为直径的圆过椭圆的右顶点
(
,
两点不与点
重合).
(1)求椭圆的标准方程;
(2)直线
是否过定点,如果过定点,求出该定点的坐标;如果不过定点,请说明理由.










(1)求椭圆的标准方程;
(2)直线

已知椭圆
的离心率为
,一个焦点在直线
上,直线
与椭圆交于
两点,其中直线
的斜率为
,直线
的斜率为
。
(1)求椭圆方程;
(2)若
,试问⊿
的面积是否为定值,若是求出这个定值,若不是请说明理由。









(1)求椭圆方程;
(2)若


已知椭圆
的左顶点为
,右焦点为
,上顶点为
,过
的直线
交椭圆
于
、
.当
与
重合时,
与
的面积分别为
、
.

(1)求椭圆
的方程;
(2)在
轴上找一点
,当
变化时,
为定值.
















(1)求椭圆

(2)在




已知椭圆
的离心率为
,以原点为圆心,椭圆的短半轴长为半径的圆与直线
相切.
(1)求椭圆的标准方程;
(2)若直线
与椭圆
相交于
两点且
.求证:
的面积为定值.



(1)求椭圆的标准方程;
(2)若直线




