刷题首页
题库
高中数学
题干
已知椭圆
的中心在原点,焦点在
轴上,离心率等于
,它的一个顶点恰好在抛物线
的准线上.
(Ⅰ)求椭圆
的标准方程.
(Ⅱ)点
,
在椭圆上,
,
是椭圆上位于直线
两侧的动点.
(i)若直线
的斜率为
,求四边形
面积的最大值.
(ii)当
,
运动时,满足
,试问直线
的斜率是否为定值,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-09-11 10:56:49
答案(点此获取答案解析)
同类题1
已知椭圆
的右焦点为
,且过点
.
(1)求椭圆的标准方程:
(2)设直线
与椭圆在第一象限的交点为
,另一个交点为
,过点
且斜率为-1的直线与
交于点
,
,求
的值。
同类题2
已知椭圆
的中心在原点,离心率等于
,它的一个短轴端点恰好是抛物线
的焦点
(1)求椭圆
的方程;
(2)已知
、
是椭圆上的两点,
,
是椭圆上位于直线
两侧的动点.①若直线
的斜率为
,求四边形
面积的最大值;
②当
,
运动时,满足
,试问直线
的斜率是否为定值,请说明理由
同类题3
已知曲线
上的任意一点到两定点
、
距离之和为
,直线
交曲线
于
两点,
为坐标原点.
(1)求曲线
的方程;
(2)若
不过点
且不平行于坐标轴,记线段
的中点为
,求证:直线
的斜率与
的斜率的乘积为定值;
(3)若直线
过点
,求
面积的最大值,以及取最大值时直线
的方程.
同类题4
已知椭圆
过点
,离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若
,
分别是椭圆
与
轴的两个交点,过点
且斜率不为
的直线
与椭圆
交于
,
两点,直线
过点
,求证:直线
过点
.
同类题5
已知曲线T上的任意一点到两定点
的距离之和为
,直线l交曲线T于A、B两点,
为坐标原点.
(1)求曲线
的方程;
(2)若
不过点
且不平行于坐标轴,记线段AB的中点为M,求证:直线
的斜率与l的斜率的乘积为定值;
(3)若OA
OB,求△
面积的取值范围.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
根据直线与椭圆的位置关系求参数或范围