- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆的定义
- + 椭圆的标准方程
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
:
的离心率为
,且以两焦点为直径的圆的内接正方形面积为2.
(1)求椭圆
的标准方程;
(2)若直线
:
与椭圆
相交于
,
两点,在
轴上是否存在点
,使直线
与
的斜率之和
为定值?若存在,求出点
坐标及该定值,若不存在,试说明理由.



(1)求椭圆

(2)若直线











如图,椭圆
:
的左、右焦点分别为
,椭圆
上一点与两焦点构成的三角形的周长为
,离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过点
的直线
交椭圆
于
两点,问在
轴上是否存在定点
,使得
为定值?证明你的结论.






(Ⅰ)求椭圆

(Ⅱ)过点








已知椭圆
的左、右焦点分别为F1,F2,离心率
,且椭圆的短轴长为2.
(1)求椭圆的标准方程;
(2)已知直线l1,l2过右焦点F2,且它们的斜率乘积为﹣1,设l1,l2分别与椭圆交于点A,B和C,


(1)求椭圆的标准方程;
(2)已知直线l1,l2过右焦点F2,且它们的斜率乘积为﹣1,设l1,l2分别与椭圆交于点A,B和C,
A.①求AB+CD的值;②设AB的中点M,CD的中点为N,求△OMN面积的最大值. |
已知椭圆
的离心率为
,若椭圆与圆
:
相交于M,N两点,且圆E在椭圆内的弧长为
.
(1)求椭圆的方程;
(2)过椭圆的上焦点作两条相互垂直的直线,分别交椭圆于A,B、C,D,求证:
为定值.





(1)求椭圆的方程;
(2)过椭圆的上焦点作两条相互垂直的直线,分别交椭圆于A,B、C,D,求证:

在圆
上任取一点
,过点
作
轴的垂线段,垂足为
,点
在直线
上,且
,当点
在圆上运动时.
(1)求点
的轨迹
的方程,并指出轨迹
.
(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与直线l的斜率的乘积为定值.









(1)求点



(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与直线l的斜率的乘积为定值.
椭圆C:
+
=1(a>b>0)的短轴两端点为B1(0,﹣1)、B2(0,1),离心率e=
,点P是椭圆C上不在坐标轴上的任意一点,直线B1P和B2P分别与x轴相交于M,N两点,

(1)求椭圆
的方程和
的值;
(2)若点
坐标为(1,0),过
点的直线
与椭圆
相交于
两点,试求
面积的最大值.




(1)求椭圆


(2)若点






椭圆E:
的左、右焦点分别为
、
,过
且斜率为
的直线与椭圆的一个交点在x轴上的射影恰好为
.
(1)求椭圆E的标准方程;
(2)设直线
与椭圆E交于A,C两点,与x轴交于点H,设AC的中点为Q,试问
是否为定值?若是,求出定值;若不是,请说明理由.






(1)求椭圆E的标准方程;
(2)设直线


已知椭圆
的离心率为
,左、右焦点分别是
,以
为圆心、3为半径的圆与以
为圆心、1为半径的圆相交,交点在椭圆C上.
(1)求椭圆C的方程;
(2)直线
与椭圆C交于A,B两点,点M是椭圆C的右顶点
直线AM与直线BM分别与y轴交于点PQ,试问以线段PQ为直径的圆是否过x轴上的定点?若是,求出定点坐标;若不是,说明理由.





(1)求椭圆C的方程;
(2)直线

