- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆的定义
- + 椭圆的标准方程
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知长度为
的线段
的两个端点
、
分别在
轴和
轴上运动,动点
满足
,设动点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)过点
且斜率不为零的直线
与曲线
交于两点
、
,在
轴上是否存在定点
,使得直线
与
的斜率之积为常数.若存在,求出定点
的坐标以及此常数;若不存在,请说明理由.










(1)求曲线

(2)过点










已知椭圆
的左、右顶点分别为
,左焦点为
,点
为椭圆
上任一点,若直线
与
的斜率之积为
,且椭圆
经过点
.
(1)求椭圆的方程;
(2)若
交直线
于
两点,过左焦点
作以
为直径的圆的切线.问切线长是否为定值,若是,请求出定值;若不是,请说明理由.










(1)求椭圆的方程;
(2)若





已知椭圆
的离心率为
,且
过点
.
(1)求椭圆
的方程;
(2)若直线
与椭圆
交于
两点(点
均在第一象限),且直线
的斜率成等比数列,证明:直线
的斜率为定值.




(1)求椭圆

(2)若直线






已知椭圆
,四点
、
、
、
中恰有三点在椭圆
上。
(1)求
的方程:
(2)椭圆
上是否存在不同的两点
、
关于直线
对称?若存在,请求出直线
的方程,若不存在,请说明理由;
(3)设直线
不经过点
且与
相交于
、
两点,若直线
与直线
的斜率的和为1,求证:
过定点。






(1)求

(2)椭圆





(3)设直线








已知动点
到定点
和定直线
的距离之比为
,设动点
的轨迹为曲线
.
(1)曲线
的方程;
(2)过点
作斜率不为
的直线
与曲线
交于两点
,设直线
的斜率分别是
,求
的值.






(1)曲线

(2)过点








已知椭圆C:
=1(a>b>0)的离心率e=
,短轴长为
.

(1)求椭圆C的标准方程.
(2)如图所示,椭圆C的左顶点为A,过原点O的直线(与坐标轴不重合)与椭圆C交于P,Q两点,直线PA,QA分别与y轴交于M,N两点.试问以MN为直径的圆是否经过定点(与直线PQ的斜率无关)?并说明理由.




(1)求椭圆C的标准方程.
(2)如图所示,椭圆C的左顶点为A,过原点O的直线(与坐标轴不重合)与椭圆C交于P,Q两点,直线PA,QA分别与y轴交于M,N两点.试问以MN为直径的圆是否经过定点(与直线PQ的斜率无关)?并说明理由.
已知椭圆C:
(a>b>0)的离心率为
,左、右焦点分别是F1,F2,点P为椭圆C上任意一点,且△PF1F2面积的最大值为
.
(1)求椭圆C的方程;
(2)过F2作垂直于x轴的直线l交椭圆于A,B两点(点A在第一象限),M,N是椭圆上位于直线l两侧的动点,若∠MAB=∠NAB,求证:直线MN的斜率为定值.



(1)求椭圆C的方程;
(2)过F2作垂直于x轴的直线l交椭圆于A,B两点(点A在第一象限),M,N是椭圆上位于直线l两侧的动点,若∠MAB=∠NAB,求证:直线MN的斜率为定值.
如图所示,A,B分别是椭圆C:
=1(a>b>0)的左右顶点,F为其右焦点,2是|AF|与|FB|的等差中项,
是|AF|与|FB|的等比中项.点P是椭圆C上异于A,B的任一动点,过点A作直线l⊥x轴.以线段AF为直径的圆交直线AP于点A,M,连接FM交直线l于点Q.
(1)求椭圆C的方程;
(2)试问在x轴上是否存在一个定点N,使得直线PQ必过该定点N?若存在,求出点N的坐标,若不存在,说明理由.


(1)求椭圆C的方程;
(2)试问在x轴上是否存在一个定点N,使得直线PQ必过该定点N?若存在,求出点N的坐标,若不存在,说明理由.

已知椭圆C的中心在原点,以坐标轴为对称轴,且经过两点
,
.
(1)求椭圆C的方程;
(2)设椭圆C在A、B两点的切线分别为
、
,P为椭圆C上任意一点,点P到直线
、
的距离分别为
、
,证明:存在直线
,使得点P到
的距离d(其中
)满足
恒为定值,并求出这一定值.


(1)求椭圆C的方程;
(2)设椭圆C在A、B两点的切线分别为










已知
分别是椭圆
的左、右焦点,离心率为
,
分别是椭圆的上、下顶点,
.
(1)求椭圆
的方程;
(2)若直线
与椭圆
交于相异两点
,且满足直线
的斜率之积为
,证明:直线
恒过定点,并采定点的坐标.





(1)求椭圆

(2)若直线





