刷题首页
题库
高中数学
题干
如图,椭圆
:
的左、右焦点分别为
,椭圆
上一点与两焦点构成的三角形的周长为
,离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过点
的直线
交椭圆
于
两点,问在
轴上是否存在定点
,使得
为定值?证明你的结论.
上一题
下一题
0.99难度 解答题 更新时间:2018-12-04 03:12:10
答案(点此获取答案解析)
同类题1
已知椭圆
的上顶点为
,右顶点为
,直线
与圆
相切.
(1)求椭圆
的方程;
(2)过点
且斜率为
的直线
与椭圆
交于
,
两点,求证:
.
同类题2
已知椭圆
的焦距为
分别为椭圆
的左、右顶点,
为椭圆
上的两点(异于
),连结
,且
斜率是
斜率的
倍.
(1)求椭圆
的方程;
(2)证明:直线
恒过定点.
同类题3
过点
且和双曲线
有相同的焦点的椭圆方程为____________。
同类题4
已知椭圆
:
的焦点分别为
,
,椭圆
的离心率为
,且经过点
,经过
,
作平行直线
,
,交椭圆
于两点
,
和两点
,
.
(1)求
的方程;
(2)求四边形
面积的最大值.
同类题5
已知椭圆
的两个焦点
,
与短轴的一个端点构成一个等边三角形,且直线
与圆
相切.
(1)求椭圆
的方程;
(2)已知过椭圆
的左顶点
的两条直线
,
分别交椭圆
于
,
两点,且
,求证:直线
过定点,并求出定点坐标;
(3)在(2)的条件下求
面积的最大值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中存在定点满足某条件问题