刷题宝
  • 刷题首页
题库 高中数学

题干

如图,椭圆:的左、右焦点分别为,椭圆上一点与两焦点构成的三角形的周长为,离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的直线交椭圆于两点,问在轴上是否存在定点,使得为定值?证明你的结论.
上一题 下一题 0.99难度 解答题 更新时间:2018-12-04 03:12:10

答案(点此获取答案解析)

同类题1

已知椭圆的上顶点为,右顶点为,直线与圆相切.
(1)求椭圆的方程;
(2)过点且斜率为的直线与椭圆交于,两点,求证:.

同类题2

已知椭圆的焦距为分别为椭圆的左、右顶点,为椭圆上的两点(异于),连结,且斜率是斜率的倍.
(1)求椭圆的方程;
(2)证明:直线恒过定点.

同类题3

过点且和双曲线有相同的焦点的椭圆方程为____________。

同类题4

已知椭圆:的焦点分别为,,椭圆的离心率为,且经过点,经过,作平行直线,,交椭圆于两点,和两点,.
(1)求的方程;
(2)求四边形面积的最大值.

同类题5

已知椭圆的两个焦点,与短轴的一个端点构成一个等边三角形,且直线与圆相切.
(1)求椭圆的方程;
(2)已知过椭圆的左顶点的两条直线,分别交椭圆于,两点,且,求证:直线过定点,并求出定点坐标;
(3)在(2)的条件下求面积的最大值.
相关知识点
  • 平面解析几何
  • 圆锥曲线
  • 椭圆
  • 椭圆的标准方程
  • 根据a、b、c求椭圆标准方程
  • 椭圆中存在定点满足某条件问题
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)