- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆的定义
- + 椭圆的标准方程
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在平面直角坐标系
中,已知椭圆
的离心率为
,且右焦点到右准线
的距离为1.过
轴上一点
为常数,且
的直线与椭圆
交于
两点,与
交于点
,
是弦
的中点,直线
与
交于点
.
(1)求椭圆
的标准方程;
(2)试判断以
为直径的圆是否经过定点?若是,求出定点坐标;若不是,请说明理由.

















(1)求椭圆

(2)试判断以


已知椭圆
的两个焦点分别是
,点
在椭圆
上,且
,记椭圆
的左右顶点分别为
,上顶点为
,
的面积为2.
(1)求椭圆
的标准方程;
(2)不过点
的直线
与椭圆
相交于
两点,记直线
的斜率分别为
,且
.试问:直线
是否恒过一定点?若是,求出该定点的坐标;若不是,请说明理由.









(1)求椭圆

(2)不过点








已知椭圆
:
的左、右焦点分别为
,
是椭圆
上的点,且
的面积为
.
(1)求椭圆
的方程;
(2)若斜率为
且在
轴上的截距为
的直线
与椭圆
相交于两点
,若椭圆
上存在点
,满足
,其中
是坐标原点,求
的值.







(1)求椭圆

(2)若斜率为











设
是圆
上的任意一点,
是过点
且与
轴垂直的直线,
是直线
与
轴的交点,点
在直线
上,且满足
.当点
在圆
上运动时,记点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)已知直线
与曲线
交于
,
两点,点
关于
轴的对称点为
,证明:直线
过定点
.















(1)求曲线

(2)已知直线









设椭圆
的离心率是
,A、B分别为椭圆的左顶点、上顶点,原点O到AB所在直线的距离为
.
(I)求椭圆C的方程;
(Ⅱ)已知直线
与椭圆相交于不同的两点M,N(均不是长轴的端点),
,垂足为H,且
,求证:直线
恒过定点.



(I)求椭圆C的方程;
(Ⅱ)已知直线




已知椭圆
的左焦点为
,过点
做
轴的垂线交椭圆于
两点,且
.
(1)求椭圆
的标准方程;
(2)若
为椭圆
短轴的上顶点,直线
不经过
点且与
相交于
两点,若直线
与直线
的斜率的和为
,问:直线
是否过定点?若是,求出这个定点,否则说明理由.






(1)求椭圆

(2)若










设圆
的圆心为A,直线
过点B(1,0)且与x轴不重合,设P为圆A上一点,线段PB的垂直平分线交直线PA于E
(1)证明
为定值,并写出E的轨迹方程;
(2)设点M的轨迹为曲线C1,直线
交C1于M,N两点,问:在
轴上是否存在定点D使直线DM与DN的倾斜角互补,若存在求出D点的坐标,否则说明理由.


(1)证明

(2)设点M的轨迹为曲线C1,直线


已知椭圆的中心在原点,焦点在
轴上,一个顶点
,且右焦点到直线
的距离为
.
(1)求椭圆的方程.
(2)若点
为椭圆的下顶点,是否存在斜率为
,且过定点
的直线
,使
与椭圆交于不同两点
,
且满足
? 若存在,求直线
的方程;若不存在,请说明理由.




(1)求椭圆的方程.
(2)若点









已知圆
,圆
过点
且与圆
相切,设圆心
的轨迹为曲线
.
(1)求曲线
的方程;
(2)点
,
为曲线
上的两点(不与点
重合),记直线
的斜率分别为
,若
,请判断直线
是否过定点. 若过定点,求该定点坐标,若不过定点,请说明理由.






(1)求曲线

(2)点







