刷题首页
题库
高中数学
题干
在平面直角坐标系中,已知动点
,点
点
与点
关于直线
对称,且
.直线
是过点
的任意一条直线.
(1)求动点
所在曲线
的轨迹方程;
(2)设直线
与曲线
交于
两点,且
,求直线
的方程;
(3)若直线
与曲线
交于
两点,与线段
交于点
(点
不同于点
),直线
与直线
交于点
,求证:
是定值.
上一题
下一题
0.99难度 解答题 更新时间:2015-02-10 10:08:48
答案(点此获取答案解析)
同类题1
如图,已知椭圆
的长轴
,长为4,过椭圆的右焦点
作斜率为
(
)的直线交椭圆于
、
两点,直线
,
的斜率之积为
.
(1)求椭圆
的方程;
(2)已知直线
,直线
,
分别与
相交于
、
两点,设
为线段
的中点,求证:
.
同类题2
已知动圆
在圆
:
外部且与圆
相切,同时还在圆
:
内部与圆
相切.
(1)求动圆圆心
的轨迹方程;
(2)记(1)中求出的轨迹为
,
与
轴的两个交点分别为
、
,
是
上异于
、
的动点,又直线
与
轴交于点
,直线
、
分别交直线
于
、
两点,求证:
为定值.
同类题3
已知某椭圆C,它的中心在坐标原点,左焦点为F(﹣
,0),且过点D(2,0).
(1)求椭圆C的标准方程;
(2)若已知点A(1,
),当点P在椭圆C上变动时,求出线段PA中点M的轨迹方程.
同类题4
已知动点
与平面上点
,
的距离之和等于
.
(1)试求动点
的轨迹方程
.
(2)设直线
与曲线
交于
、
两点,当
时,求直线的方程.
同类题5
已知点
的坐标为
,
,直线
,
相交于点
,且它们的斜率之积是
.
(1)求点
的轨迹方程;
(2)设
为坐标原点,过点
的直线
与点
的轨迹交于
两点,求
的面积的最大值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
轨迹问题——椭圆
椭圆中的定值问题