刷题首页
题库
高中数学
题干
如图,分别过椭圆
:
左右焦点
、
的动直线
相交于
点,与椭圆
分别交于
不同四点,直线
的斜率
、
、
、
满足
.已知当
轴重合时,
,
.
(1)求椭圆
的方程;
(2)是否存在定点
,使得
为定值.若存在,求出
点坐标并求出此定值,若不存在,说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2014-12-03 05:38:15
答案(点此获取答案解析)
同类题1
设椭圆
的左顶点为
,且椭圆
与直线
相切,
(1)求椭圆
的标准方程;
(2)过点
的动直线与椭圆
交于
两点,设
为坐标原点,是否存在常数
,使得
?请说明理由.
同类题2
已知
的焦点
,在直线
l
:
上找一点M,求以
为焦点,通过点M且长轴最短的椭圆方程.
同类题3
在平面直角坐标系
中,已知椭圆
的中心在原点
,焦点在
轴上短轴长为2,离心率为
,过左顶点
的直线
与椭圆交于另一点
.
(1)求椭圆
的方程;
(2)若
,求直线
的倾斜角.
同类题4
已知椭圆
的离心率为
,短轴长为4.
(1)求椭圆
的方程;
(2)过点
作两条直线,分别交椭圆
于
两点(异于
),当直线
,
的斜率之和为4时,直线
恒过定点,求出定点的坐标.
同类题5
设椭圆
的离心率是
,过点
的动直线
于椭圆相交于
两点,当直线
平行于
轴时,直线
被椭圆
截得弦长为
.
(Ⅰ)求
的方程;
(Ⅱ)在
上是否存在与点
不同的定点
,使得直线
和
的倾斜角互补?若存在,求
的坐标;若不存在,说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定值问题