刷题首页
题库
高中数学
题干
在平面直角坐标系
中,椭圆E:
(a>0,b>0)经过点A(
,
),且点F(0,-1)为其一个焦点.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设椭圆E与y轴的两个交点为A
1
,A
2
,不在y轴上的动点P在直线y=b
2
上运动,直线PA
1
,PA
2
分别与椭圆E交于点M,N,证明:直线MN通过一个定点,且△FMN的周长为定值.
上一题
下一题
0.99难度 解答题 更新时间:2011-04-07 10:43:41
答案(点此获取答案解析)
同类题1
已知椭圆
:
的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线
:
与椭圆
有且只有一个公共点T.
(Ⅰ)求椭圆
的方程及点
的坐标;
(Ⅱ)设
是坐标原点,直线
平行于
,与椭圆
交于不同的两点
、
,且与直线
交于点
,证明:存在常数
,使得
,并求
的值.
同类题2
如图,已知抛物线
的焦点为
,椭圆
的中心在原点,
为其右焦点,点
为曲线
和
在第一象限的交点,且
.
(1)求椭圆
的标准方程;
(2)设
为抛物线
上的两个动点,且使得线段
的中点
在直线
上,
为定点,求
面积的最大值.
同类题3
已知点
在椭圆
:
(
)上,且点
到左焦点
的距离为3.
(1)求椭圆
的标准方程;
(2)设
为坐标原点,与直线
平行的直线
交椭圆
于不同两点
、
,求
面积的最大值.
同类题4
已知椭圆
的两个焦点是
和
,并且经过点
,抛物线
的顶点在坐标原点,焦点恰好是椭圆
的右顶点.
(Ⅰ)求椭圆
和抛物线
的标准方程;
(Ⅱ)已知点
为抛物线
内一个定点,过
作斜率分别为
的两条直线交抛物线
于点
,且
分别是
的中点,若
,求证:直线
过定点.
同类题5
椭圆
的两个焦点为
,点P在椭圆C 上,且
,
,
.
(1)求椭圆C的方程;
(2)若直线L过点
交椭圆于A、B两点,且点M为线段AB的中点,求直线L的一般方程.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
根据椭圆过的点求标准方程