- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆的定义
- + 椭圆的标准方程
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆E:
经过点P(2,1),且离心率为
.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设O为坐标原点,在椭圆短轴上有两点M,N满足
,直线PM、PN分别交椭圆于A,B.探求直线AB是否过定点,如果经过定点请求出定点的坐标,如果不经过定点,请说明理由.


(Ⅰ)求椭圆的标准方程;
(Ⅱ)设O为坐标原点,在椭圆短轴上有两点M,N满足

在平面直角坐标系
中,已知
分别为椭圆
的左、右焦点,且椭圆经过点
和点
,其中
为椭圆的离心率.

(1)求椭圆的方程;
(2)过点
的直线
椭圆于另一点
,点
在直线
上,且
.若
,求直线
的斜率.







(1)求椭圆的方程;
(2)过点








如图,在平面直角坐标系
中,已知椭圆
:
经过点
.设椭圆
的左顶点为
,右焦点为
,右准线与
轴交于点
,且
为线段
的中点. 椭圆
的标准方程为

_____。













_____。
已如椭圆C:
的两个焦点与其中一个顶点构成一个斜边长为4的等腰直角三角形.
(1)求椭圆C的标准方程;
(2)设动直线l交椭圆C于P,Q两点,直线OP,OQ的斜率分别为k,k'.若
,求证△OPQ的面积为定值,并求此定值.

(1)求椭圆C的标准方程;
(2)设动直线l交椭圆C于P,Q两点,直线OP,OQ的斜率分别为k,k'.若

给定椭圆
:
,称圆心在原点
,半径为
的圆是椭圆
的“伴椭圆”,若椭圆
的一个焦点为
,其短轴上一个端点到
的距离为
.
(1)求椭圆
的方程;
(2)过点
作椭圆
的“伴随圆”
的动弦
,过点
、
分别作“伴随圆”
的切线,设两切线交于点
,证明:点
的轨迹是直线,并写出该直线的方程;
(3)设点
是椭圆
的“伴随圆”
上的一个动点,过点
作椭圆
的切线
、
,试判断直线
、
是否垂直?并说明理由.









(1)求椭圆

(2)过点









(3)设点









已知椭圆
的左焦点为F,上顶点为B,右顶点为A,过点F作x轴垂线,该垂线与直线AB交点为M,若
,且
的面积为
,则C的标准方程为




A.![]() | B.![]() | C.![]() | D.![]() |
已知椭圆C:
(a>b>0),左、右焦点分别为F1(﹣1,0),F2(1,0),椭圆离心率为
,过点P(4,0)的直线l与椭圆C相交于A、B两点(A在B的左侧).
(1)求椭圆C的方程;
(2)若B是AP的中点,求直线l的方程;
(3)若B点关于x轴的对称点是E,证明:直线AE与x轴相交于定点.


(1)求椭圆C的方程;
(2)若B是AP的中点,求直线l的方程;
(3)若B点关于x轴的对称点是E,证明:直线AE与x轴相交于定点.
如图,在平面直角坐标系xoy中,椭圆
的左、右顶点分别为A,B,点(
,3e)和(b,
)都在椭圆上,其中e为椭圆的离心率.

(1)求椭圆的标准方程;
(2)若点C是椭圆上异于左、右顶点的任一点,线段BC的垂直平分线与直线BC,AC分别交于点P,Q,求证:
为定值.




(1)求椭圆的标准方程;
(2)若点C是椭圆上异于左、右顶点的任一点,线段BC的垂直平分线与直线BC,AC分别交于点P,Q,求证:
