刷题首页
题库
高中数学
题干
已知椭圆E:
经过点P(2,1),且离心率为
.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设
O
为坐标原点,在椭圆短轴上有两点
M
,
N
满足
,直线PM、PN分别交椭圆于
A
,B
.探求直线
AB
是否过定点,如果经过定点请求出定点的坐标,如果不经过定点,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-11-19 01:22:16
答案(点此获取答案解析)
同类题1
已知椭圆
:
的离心率为
,点
在椭圆上,
为坐标原点.
(Ⅰ)求椭圆
的方程;
(Ⅱ)已知点
、
、
为椭圆
上的三点,若四边形
为平行四边形,证明四边形
的面积
为定值,并求出该定值.
同类题2
如下图,在平面直角坐标系
中,椭圆
的左、右焦点分别为
,
,已知点
和
都在椭圆上,其中
为椭圆的离心率.
(1)求椭圆的方程;
(2)设
,
是椭圆上位于
轴上方的两点,且直线
与直线
平行,
与
交于点
,
(i)若
,求直线
的斜率;
(ii)求证:
是定值.
同类题3
已知椭圆
抛物线
焦点均在
轴上,
的中心和
顶点均为原点
,从每条曲线上各取两个点,将其坐标记录于表中,则
的左焦点到
的准线之间的距离为 ( )
A.
;
B.
;
C.1;
D.2.
同类题4
如图,已知椭圆
过点.
,离心率为
,左、右焦点分别为
、
.点
为直线
上且不在
轴上的任意一点,直线
和
与椭圆的交点分别为
、
和
、
,
为坐标原点.
(I)求椭圆的标准方程;
(II)设直线
、
的斜线分别为
、
. 证明:
同类题5
已知椭圆
:
的四个顶点组成的四边形的面积为
,且经过点
.
(1)求椭圆
的方程;
(2)若椭圆
的下顶点为
,如图所示,点
为直线
上的一个动点,过椭圆
的右焦点
的直线
垂直于
,且与
交于
,
两点,与
交于点
,四边形
和
的面积分别为
,
,求
的最大值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
直线与椭圆的位置关系