刷题首页
题库
高中数学
题干
给定椭圆
:
,称圆心在原点
,半径为
的圆是椭圆
的“伴椭圆”,若椭圆
的一个焦点为
,其短轴上一个端点到
的距离为
.
(1)求椭圆
的方程;
(2)过点
作椭圆
的“伴随圆”
的动弦
,过点
、
分别作“伴随圆”
的切线,设两切线交于点
,证明:点
的轨迹是直线,并写出该直线的方程;
(3)设点
是椭圆
的“伴随圆”
上的一个动点,过点
作椭圆
的切线
、
,试判断直线
、
是否垂直?并说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-11-19 03:51:58
答案(点此获取答案解析)
同类题1
如图,若
,
,则以
为长半轴,
为短半轴,
为左焦点的椭圆的标准方程为
.
同类题2
椭圆长轴上的两端点
,
,两焦点恰好把长轴三等分,则该椭圆的标准方程为()
A.
B.
C.
D.
同类题3
已知椭圆
的长轴长是短轴长的2倍,且过点
.
(1)求椭圆的标准方程;
(2)直线
交椭圆于
两点,若点
始终在以
为直径的圆内,求实数
的取值范围.
同类题4
已知椭圆
的左、右焦点分别为
,若椭圆经过点
,且
的面积为
.
(1)求椭圆
的标准方程;
(2)设斜率为
的直线
与以原点为圆心,半径为
的圆交于
两点,与椭圆
交于
两点,且
,当
取得最小值时,求直线
的方程并求此时
的值.
同类题5
在平面直角坐标系
中有如下正确结论:
为曲线
(
、
为非零实数,且不同时为负)上一点,则过点
的切线方程为
.
(1)已知
为椭圆
上一点,
为过点
的椭圆的切线,若直线
与直线
的斜率分别为
与
,求证:
为定值;
(2)过椭圆
上一点
引椭圆
的切线,与
轴交于点
.若
为正三角形,求椭圆
的方程;
(3)求与圆
及(2)中的椭圆
均相切的直线
与坐标轴围成的三角形的面积的取值范围.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
求椭圆的切线方程