- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆的定义
- + 椭圆的标准方程
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知
,方程
所表示的曲线为( )


A.中心在坐标原点,焦点在x轴上的椭圆 |
B.中心在坐标原点,焦点在y轴上的椭圆 |
C.中心在坐标原点的圆 |
D.中心在坐标原点,焦点在y轴上的双曲线 |
对于曲线
:
,给出下面四个命题:
①曲线
可能表示圆;
②当
时,曲线
表示椭圆;
③若曲线
表示双曲线,则
或
;
④若曲线
表示焦点在
轴上的椭圆,则
;
其中所有正确命题的序号为______.


①曲线

②当


③若曲线



④若曲线



其中所有正确命题的序号为______.
已知椭圆的焦点坐标是
,过点
且垂直于长轴的直线交椭圆于
两点,且
.
(1)求椭圆的标准方程;
(2)过点
的直线
与椭圆交于不同的两点
,问三角形
内切圆面积是否存在最大值?若存在,请求出这个最大值及此时直线的方程;若不存在,请说明理由.




(1)求椭圆的标准方程;
(2)过点




如图,椭圆
的左、右顶点分别为
,焦距为
,直线
与
交于点
,且
,过点
作直线
交直线
于点
,交椭圆于另一点
.

(1)求椭圆的方程;
(2)证明:
为定值.













(1)求椭圆的方程;
(2)证明:

如图,已知
是椭圆
的左、右焦点,椭圆的短轴长为
,点
是椭圆
上的一点,过点
作
轴的垂线交椭圆于另一点
(
不过点
),且
的周长的最大值为8.

(1)求椭圆
的标准方程;
(2)若
过焦点
,在椭圆上取两点
,连接
,与
轴的交点分别为
,过点
作椭圆的切线
,当四边形
为菱形时,证明:直线
.












(1)求椭圆

(2)若










设椭圆
:
的左顶点为
,右焦点为
,已知
.
(1)求椭圆
的方程;
(2)抛物线
与直线
交于
,
两点,直线
与椭圆
交于点
(异于点
),若直线
与
垂直,求
的值.





(1)求椭圆

(2)抛物线











椭圆
和椭圆
满足椭圆
,则称这两个椭圆相似,m称为其相似比.
(1)求经过点
,且与椭圆
相似的椭圆方程;
(2)设过原点的一条射线L分别与(1)中的两个椭圆交于A、B两点(其中点A在线段OB上),求
的最大值和最小值;
(3)对于真命题“过原点的一条射线分别与相似比为2的两个椭圆
和
交于A、B两点,P为线段AB上的一点,若
,
,
成等比数列,则点P的轨迹方程为
”.请用推广或类比的方法提出类似的一个真命题,不必证明.



(1)求经过点


(2)设过原点的一条射线L分别与(1)中的两个椭圆交于A、B两点(其中点A在线段OB上),求

(3)对于真命题“过原点的一条射线分别与相似比为2的两个椭圆





