刷题首页
题库
高中数学
题干
设椭圆
:
的左顶点为
,右焦点为
,已知
.
(1)求椭圆
的方程;
(2)抛物线
与直线
交于
,
两点,直线
与椭圆
交于点
(异于点
),若直线
与
垂直,求
的值.
上一题
下一题
0.99难度 解答题 更新时间:2020-03-27 11:39:00
答案(点此获取答案解析)
同类题1
已知椭圆
,与
轴负半轴交于
,离心率
(1)求椭圆
的方程;
(2)设直线
与椭圆
交于
,
两点,连接
,
并延长交直线
于
,
两点,若
,求证:直线
恒过定点,并求出定点坐标。
同类题2
如图,
F
1
(﹣2,0),
F
2
(2,0)是椭圆
C
:
的两个焦点,
M
是椭圆
C
上的一点,当
MF
1
⊥
F
1
F
2
时,有|
MF
2
|=3|
MF
1
|.
(1)求椭圆
C
的标准方程;
(2)过点
P
(0,3)作直线
l
与轨迹
C
交于不同两点
A
,
B
,使△
OAB
的面积为
(其中
O
为坐标原点),问同样的直线
l
共有几条?并说明理由.
同类题3
已知椭圆
:
的短轴长为
,离心率为
.
(1)求椭圆
的方程;
(2)设椭圆
的左、右焦点分别为
、
,左、右顶点分别为
、
,点
、
为椭圆
上位于
轴上方的两点,且
,记直线
、
的斜率分别为
、
,若
,求直线
的方程.
同类题4
(本小题满分13分)已知椭圆
:
的离心率为
,过右焦点
的直线
与
相交于
,
两点,当
的斜率为
时,坐标原点
到
的距离为
.
(1)求椭圆
的标准方程;
(2)
上是否存在点
,使得当
绕
转到某一位置时,有
成立?若存在,求出所有的
的坐标与
的方程;若不存在,说明理由,
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
求直线与抛物线的交点坐标