- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆的定义
- + 椭圆的标准方程
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的中心和抛物线
的顶点都在坐标原点
,
和
有公共焦点
,点
在
轴正半轴上,且
的长轴长、短轴长及点
到直线
的距离成等比数列.
(Ⅰ)当
的准线与直线
的距离为
时,求
及
的方程;
(Ⅱ)设过点
且斜率为
的直线
交
于
,
两点,交
于
,
两点.当
时,求
的值.











(Ⅰ)当





(Ⅱ)设过点











已知抛物线
的焦点为
,点
与
关于坐标原点对称,直线
垂直于
轴,垂足为
,与抛物线交于不同的两点
,
,且
.
(1)求点
的横坐标.
(2)若以
,
为焦点的椭圆
过点
(ⅰ)求椭圆
的标准方程;
(ⅱ)过点
作直线
与椭圆
交于
,
两点,设
,若
,求
的取值范围.










(1)求点

(2)若以




(ⅰ)求椭圆

(ⅱ)过点








已知点
,过点D作抛物线
的切线l,切点A在第二象限.
求切点A的纵坐标;
有一离心率为
的椭圆
恰好经过切点A,设切线l与椭圆的另一交点为点B,记切线l,OA,OB的斜率分别为k,
,
,若
,求椭圆的方程.









如图,设椭圆
:
,长轴的右端点与抛物线
:
的焦点
重合,且椭圆
的离心率是
.

(Ⅰ)求椭圆
的标准方程;
(Ⅱ)过
作直线
交抛物线
于
,
两点,过
且与直线
垂直的直线交椭圆
于另一点
,求
面积的最小值,以及取到最小值时直线
的方程.








(Ⅰ)求椭圆

(Ⅱ)过











已知椭圆M:
(a>b>0)的一个焦点F与抛物线N:y2=4x的焦点重合,且M经过点(1,
).

(1)求椭圆M的方程;
(2)已知斜率大于0且过点F的直线l与椭圆M及抛物线N自上而下分别交于A,B,C,D,如图所示,若|AC|=8,求|AB|-|CD|.



(1)求椭圆M的方程;
(2)已知斜率大于0且过点F的直线l与椭圆M及抛物线N自上而下分别交于A,B,C,D,如图所示,若|AC|=8,求|AB|-|CD|.
设复平面上点
对应的复数
(
为虚数单位)满足
,点
的轨迹方程为曲线
. 双曲线
:
与曲线
有共同焦点,倾斜角为
的直线
与双曲线
的两条渐近线的交点是
、
,
,
为坐标原点.
(1)求点
的轨迹方程
;
(2)求直线
的方程;
(3)设△PQR三个顶点在曲线
上,求证:当
是△PQR重心时,△PQR的面积是定值.

















(1)求点


(2)求直线

(3)设△PQR三个顶点在曲线


如图,已知椭圆的离心率为
,以该椭圆上的点和椭圆的左、右焦点
为顶点的三角形的周长为
,一双曲线的顶点是该椭圆的焦点,且它的实轴长等于虚轴长,设
为该双曲线上异于顶点的任一点,直线
和
与椭圆的交点分别为
和
,其中
在
轴的同一侧.
(1)求椭圆和双曲线的标准方程;
(2)是否存在题设中的点
,使得
?若存在, 求出点
的坐标;若不存在,请说明理由.










(1)求椭圆和双曲线的标准方程;
(2)是否存在题设中的点




设椭圆的对称中心为坐标原点,其中一个顶点为
,右焦点
与点
的距离为2.
(1)求椭圆的方程;
(2)是否存在经过点
的直线
,使直线
与椭圆相交于不同的两点
,
满足
?若存在,求出直线
的方程;若不存在,请说明理由.



(1)求椭圆的方程;
(2)是否存在经过点







已知椭圆
的左、右焦点分别为
,离心率
,
为右顶点,
为右准线与
轴的交点,且
.
(I)求椭圆的标准方程;
(II)设椭圆的上顶点为
,问是否存在直线
,使直线
交椭圆于
,
两点,且椭圆的左焦点恰为
的垂心?若存在,求出
的方程;若不存在,请说明理由.







(I)求椭圆的标准方程;
(II)设椭圆的上顶点为






