- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆定义及辨析
- + 利用椭圆定义求方程
- 椭圆上点到焦点的距离及最值
- 椭圆上的点到坐标轴上的点的距离及最值
- 椭圆中焦点三角形的周长问题
- 椭圆上点到焦点和定点距离的和、差最值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知曲线
上任意一点
到两个定点
和
的距离之和为4.
(1)求曲线
的方程;
(2)设过
的直线
与曲线
交于
、
两点,且
(
为坐标原点),求直线
的方程.




(1)求曲线

(2)设过








如图,在平面直角坐标系
中,已知圆
,点
,点
,以
为圆心,
为半径作圆,交圆
于点
,且
的平分线交线段
于点
.

(1)当
变化时,点
始终在某圆锥曲线
上运动,求曲线
的方程;
(2)已知直线
过点
,且与曲线
交于
两点,记
面积为
,
面积为
,求
的取值范围.












(1)当




(2)已知直线









已知点
,点
,点
,动圆
与
轴相切于点
,过点
的直线
与圆
相切于点
,过点
的直线
与圆
相切于点
(
均不同于点
),且
与
交于点
,设点
的轨迹为曲线
.
(1)证明:
为定值,并求
的方程;
(2)设直线
与
的另一个交点为
,直线
与
交于
两点,当
三点共线时,求四边形
的面积.





















(1)证明:


(2)设直线








已知平面上的三点
、
、
.
(1)求以
、
为焦点且过点
的椭圆的标准方程;
(2)设点
、
、
关于直线
的对称点分别为
、
、
,求以
、
为焦点且过点
的双曲线的标准方程.



(1)求以



(2)设点









