- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 曲线与方程
- 曲线与方程的概念
- 曲线的交点问题
- 轨迹问题
- 椭圆
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线的方程为
:
,过点
的一条直线与抛物线
交于
两点,若抛物线在
两点的切线交于点
.
(1)求点
的轨迹方程;
(2)设直线
的斜率存在,取为
,取直线
的斜率为
,请验证
是否为定值?若是,计算出该值;若不是,请说明理由.







(1)求点

(2)设直线





已知
的顶点
,点
在
轴上移动,
,且
的中点在
轴上.
(Ⅰ)求
点的轨迹
的方程;
(Ⅱ)已知过
的直线
交轨迹
于不同两点
,
,求证:
与
,
两点连线
,
的斜率之积为定值.







(Ⅰ)求


(Ⅱ)已知过










已知两点
,点
为坐标平面内的动点,且满足
.
(1)求点
的轨迹
的方程;
(2)设过点
的直线
的斜率为
,且与曲线
相交于点
,若
两点只在第二象限内运动,线段
的垂直平分线交
轴于
点,求
点横坐标的取值范围.



(1)求点


(2)设过点










在平面直角坐标系xOy中,直线l:x=﹣2交x轴于点A,设P是l上一点,M是线段OP的垂直平分线上一点,且满足∠MPO=∠AOP.
(1)当点P在l上运动时,求点M的轨迹E的方程;
(2)已知T(1,﹣1),设H是E上动点,求|HO|+|HT|的最小值,并给出此时点H的坐标;
(3)过点T(1,﹣1)且不平行与y轴的直线l1与轨迹E有且只有两个不同的交点,求直线l1的斜率k的取值范围.
(1)当点P在l上运动时,求点M的轨迹E的方程;
(2)已知T(1,﹣1),设H是E上动点,求|HO|+|HT|的最小值,并给出此时点H的坐标;
(3)过点T(1,﹣1)且不平行与y轴的直线l1与轨迹E有且只有两个不同的交点,求直线l1的斜率k的取值范围.
已知抛物线
与直线
交于A、B两点,O为坐标原点.
(I)当k=1时,求线段AB的长;
(II)当k在R内变化时,求线段AB中点C的轨迹方程;
(III)设
是该抛物线的准线.对于任意实数k,
上是否存在点D,使得
?如果存在,求出点D的坐标;如不存在,说明理由.


(I)当k=1时,求线段AB的长;
(II)当k在R内变化时,求线段AB中点C的轨迹方程;
(III)设



设点
是
轴上的一个定点,其横坐标为
(
),已知当
时,动圆
过点
且与直线
相切,记动圆
的圆心
的轨迹为
.
(Ⅰ)求曲线
的方程;
(Ⅱ)当
时,若直线
与曲线
相切于点
(
),且
与以定点
为圆心的动圆
也相切,当动圆
的面积最小时,证明:
、
两点的横坐标之差为定值.











(Ⅰ)求曲线

(Ⅱ)当










