- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与方程
- 圆与方程
- + 圆锥曲线
- 曲线与方程
- 椭圆
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线
:
的焦点为
,准线为
,过点
作直线交
于
,
两点,过
,
分别作
的垂直交
于
,
两点,设
,
的斜率分别为
,
,则
的最小值为__________.



















已知
为抛物线
的焦点,点
为其上一点,
与
关于
轴对称,直线
与抛物线交于异于
的
两点,
,
.
(1)求抛物线的标准方程和
点的坐标;
(2)判断是否存在这样的直线
,使得
的面积最小.若存在,求出直线
的方程和
面积的最小值;若不存在,请说明理由.











(1)求抛物线的标准方程和

(2)判断是否存在这样的直线




已知
是抛物线
上不同两点.
(1)设直线
与
轴交于点
,若
两点所在的直线方程为
,且直线
恰好平分
,求抛物线
的标准方程.
(2)若直线
与
轴交于点
,与
轴的正半轴交于点
,且
,是否存在直线
,使得
?若存在,求出直线
的方程;若不存在,请说明理由.


(1)设直线








(2)若直线








