- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与方程
- 圆与方程
- + 圆锥曲线
- 曲线与方程
- 椭圆
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设抛物线
的焦点为
,准线为
,点
在抛物线
上,已知以点
为圆心,
为半径的圆
交
于
两点.
(Ⅰ)若
,
的面积为4,求抛物线
的方程;
(Ⅱ)若
三点在同一条直线
上,直线
与
平行,且
与抛物线
只有一个公共点,求直线
的方程.










(Ⅰ)若



(Ⅱ)若







已知动圆
过定点
,且与定直线
相切,动圆圆心
的轨迹方程为
,直线
过点
交曲线
于
两点.
(1)若
交
轴于点
,求
的取值范围;
(2)若
的倾斜角为
,在
上是否存在点
使
为正三角形?若能,求点
的坐标;若不能,说明理由.










(1)若




(2)若






已知抛物线
,过焦点
的直线交
于
两点,
是抛物线的准线
与
轴的交点.
(1)若
,且
的面积为
,求抛物线的方程;
(2)设
为
的中点,过
作
的垂线,垂足为
,证明:直线
与抛物线相切.







(1)若



(2)设





