- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与方程
- 圆与方程
- + 圆锥曲线
- 曲线与方程
- 椭圆
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线
的焦点到其准线的距离为
.
(1)求抛物线
的方程;
(2)设直线
与抛物线
相交于
两点,问抛物线
上是否存在点
,使得
是正三角形?若存在,求出点
的坐标;若不存在,请说明理由.


(1)求抛物线

(2)设直线







已知椭圆
的焦距等于
,短轴与长轴的长度比等于
.
(1)求椭圆
的方程;
(2)设点
在椭圆
上,过
作两直线
,分别交椭圆
于另外两点
,当
的倾斜角互为补角时,求
面积的最大值.



(1)求椭圆

(2)设点








椭圆
的离心率为
而且过点
,其长轴的左右端点分别为
,
,直线
交椭圆于
,
两点.
(1)求椭圆的标准方程;
(2)设直线
,
的斜率分别为
,
,若
,求
的值.








(1)求椭圆的标准方程;
(2)设直线





