- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与方程
- 圆与方程
- + 圆锥曲线
- 曲线与方程
- 椭圆
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的离心率为
,过焦点且垂直于
轴的直线被椭圆
所截得的弦长为
.
(1)求椭圆
的标准方程;
(2)若经过点
的直线
与椭圆
交于不同的两点
是坐标原点,求
的取值范围.





(1)求椭圆

(2)若经过点





已知抛物线
的焦点为
,过点
的直线交抛物线
于
和
两点.
(1)当
时,求直线
的方程;
(2)若过点
且垂直于直线
的直线
与抛物线
交于
两点,记
与
的面积分别为
,求
的最小值.






(1)当


(2)若过点









已知椭圆
过点
,且离心率为
.
(1)求椭圆
的方程;
(2)设椭圆
在左、右顶点分别为
、
,左焦点为
,过
的直线
与
交于
、
两点(
和
均不在坐标轴上),直线
、
分别与
轴交于点
、
,直线
、
分别与
轴交于点
、
,求证:
为定值,并求出该定值.



(1)求椭圆

(2)设椭圆






















已知F1,F2是双曲线C:
的两个焦点,以线段F1F2为边作正三角形MF1F2,若边MF1的中点
在双曲线C上,则双曲线C的离心率为( )


A.4+2![]() | B.![]() | C.![]() | D.![]() |
已知椭圆C:
1(a>b>0),其右焦点为F(1,0),离心率为
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点F作倾斜角为α的直线l,与椭圆C交于P,Q两点.
(ⅰ)当
时,求△OPQ(O为坐标原点)的面积;
(ⅱ)随着α的变化,试猜想|PQ|的取值范围,并证明你的猜想.


(Ⅰ)求椭圆C的方程;
(Ⅱ)过点F作倾斜角为α的直线l,与椭圆C交于P,Q两点.
(ⅰ)当

(ⅱ)随着α的变化,试猜想|PQ|的取值范围,并证明你的猜想.