刷题首页
题库
高中数学
题干
椭圆
的离心率为
而且过点
,其长轴的左右端点分别为
,
,直线
交椭圆于
,
两点.
(1)求椭圆的标准方程;
(2)设直线
,
的斜率分别为
,
,若
,求
的值.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-22 01:12:09
答案(点此获取答案解析)
同类题1
已知椭圆
和抛物线
,在
,
上各取两个点,这四个点的坐标为
,
,
,
(Ⅰ)求
,
的方程;
(Ⅱ)设
是
在第一象限上的点,
在点
处的切线
与
交于
两点,线段
的中点为
,过原点
的直线
与过点
且垂直于
轴的直线交于点
,证明:点
在定直线上.
同类题2
已知椭圆
的焦点在坐标轴上,对称中心为坐标原点,且过点
和
.
(1)求椭圆
的标准方程;
(2)设直线
交椭圆
于
两点,坐标原点
到直线
的距离为
,求证:
是定值.
同类题3
(题文)已知离心率为
的椭圆C:
经过点(0,-1),且F
1
、F
2
分别是椭圆C的左、右焦点,不经过F
1
的斜率为k的直线l与椭圆C相交于A、B两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)如果直线AF
1
、l、BF
1
的斜率依次成等差数列,求k的取值范围,并证明AB的中垂线过定点.
同类题4
已知椭圆
(
)的离心率是
,其左、右焦点分别为
,短轴顶点分别为
,如图所示,
的面积为1.
(1)求椭圆
的标准方程;
(2)过点
且斜率为
的直线
交椭圆
于
两点(异于
点),证明:直线
和
的斜率和为定值.
同类题5
已知椭圆
过点
,且其中一个焦点的坐标为
.
(1)求椭圆
的方程;
(2)若经过
的直线
(与
轴不重合)与椭圆交于
两点,在
轴上是否存在点
使得
为定值?若存在,求岀点
的坐标;若不存在,请说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
根据离心率求椭圆的标准方程