- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断直线与圆的位置关系
- 由直线与圆的位置关系求参数
- 求直线与圆交点的坐标
- + 直线与圆相交的性质——韦达定理及应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在平面直角坐标系
中,已知
为三个不同的定点.以原点
为圆心的圆与线段
都相切.
(Ⅰ)求圆
的方程及
的值;
(Ⅱ)若直线
与圆
相交于
两点,且
,求
的值;
(Ⅲ)在直线
上是否存在异于
的定点
,使得对圆
上任意一点
,都有
为常数
?若存在,求出点
的坐标及
的值;若不存在,请说明理由.




(Ⅰ)求圆


(Ⅱ)若直线





(Ⅲ)在直线









已知圆
:
与直线
:
,动直线
过定点
.

(1)若直线
与圆
相切,求直线
的方程;
(2)若直线
与圆
相交于
、
两点,点M是PQ的中点,直线
与直线
相交于点N.探索
是否为定值,若是,求出该定值;若不是,请说明理由.







(1)若直线



(2)若直线







已知直线l:4x+3y+10=0,半径为2的圆C与l相切,圆心C在x轴上且在直线l的右上方.
(1)求圆C的方程;
(2)过点M(1,0)的直线与圆C交于A,B两点(A在x轴上方),问在x轴正半轴上是否存在定点N,使得x轴平分∠ANB?若存在,请求出点N的坐标;若不存在,请说明理由.
(1)求圆C的方程;
(2)过点M(1,0)的直线与圆C交于A,B两点(A在x轴上方),问在x轴正半轴上是否存在定点N,使得x轴平分∠ANB?若存在,请求出点N的坐标;若不存在,请说明理由.
如图,圆
与
轴交于
、
两点,动直线
(
)与
轴、
轴分别交于点
、
,与圆交于
、
两点(点
纵坐标大于点
纵坐标).

(1)若
,点
与点
重合,求点
的坐标;
(2)若
,
,求直线
将圆分成的劣弧与优弧之比;
(3)若
,设直线
、
的斜率分别为
、
,是否存在实数
使得
?若存在,求出
的值,若不存在,说明理由.















(1)若




(2)若



(3)若








已知圆
.
(1)直线
与圆
相交于
两点,求弦
的长度;
(2)如图,设
,
是圆
上的两个动点,点
关于原点的对称点为
,点
关于
轴的对称点为
,如果直线
与
轴分别交于
和
,问
是否为定值?若是求出该定值;若不是,请说明理由.

(1)直线




(2)如图,设














已知圆
过点
,且与圆
关于直线
对称.
(1)求圆
的方程;
(2)过点
作两条相异直线分别与圆
相交于
,且直线
和直线
的倾斜角互补,
为坐标原点,试判断直线
和
是否平行?请说明理由.




(1)求圆

(2)过点








在平面直角坐标系
中,直线
与圆
相切,圆心
的坐标为
.
(1)求圆
的方程;
(2)设直线
与圆
没有公共点,求
的取值范围;
(3)设直线
与圆
交于
、
两点,且
,求
的值.





(1)求圆

(2)设直线



(3)设直线





